Dirichlet Character
In analytic number theory and related branches of mathematics, a complex-valued arithmetic function \chi: \mathbb\rightarrow\mathbb is a Dirichlet character of modulus m (where m is a positive integer) if for all integers a and b: # \chi(ab) = \chi(a)\chi(b); that is, \chi is completely multiplicative. # \chi(a) \begin =0 &\text \gcd(a,m)>1\\ \ne 0&\text\gcd(a,m)=1. \end (gcd is the greatest common divisor) # \chi(a + m) = \chi(a); that is, \chi is periodic with period m. The simplest possible character, called the principal character, usually denoted \chi_0, (see Notation below) exists for all moduli: : \chi_0(a)= \begin 0 &\text \gcd(a,m)>1\\ 1 &\text \gcd(a,m)=1. \end The German mathematician Peter Gustav Lejeune Dirichlet—for whom the character is named—introduced these functions in his 1837 paper on primes in arithmetic progressions. Notation \phi(n) is Euler's totient function. \zeta_n is a complex primitive n-th root of unity: : \zeta_n^n=1, but \zeta_n\ne 1, \ze ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Analytic Number Theory
In mathematics, analytic number theory is a branch of number theory that uses methods from mathematical analysis to solve problems about the integers. It is often said to have begun with Peter Gustav Lejeune Dirichlet's 1837 introduction of Dirichlet ''L''-functions to give the first proof of Dirichlet's theorem on arithmetic progressions. It is well known for its results on prime numbers (involving the Prime Number Theorem and Riemann zeta function) and additive number theory (such as the Goldbach conjecture and Waring's problem). Branches of analytic number theory Analytic number theory can be split up into two major parts, divided more by the type of problems they attempt to solve than fundamental differences in technique. * Multiplicative number theory deals with the distribution of the prime numbers, such as estimating the number of primes in an interval, and includes the prime number theorem and Dirichlet's theorem on primes in arithmetic progressions. *Additive numb ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Abelian Group
In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is commutative. With addition as an operation, the integers and the real numbers form abelian groups, and the concept of an abelian group may be viewed as a generalization of these examples. Abelian groups are named after the Norwegian mathematician Niels Henrik Abel. The concept of an abelian group underlies many fundamental algebraic structures, such as fields, rings, vector spaces, and algebras. The theory of abelian groups is generally simpler than that of their non-abelian counterparts, and finite abelian groups are very well understood and fully classified. Definition An abelian group is a set A, together with an operation ・ , that combines any two elements a and b of A to form another element of A, denoted a \cdot b. The sym ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Modular Form
In mathematics, a modular form is a holomorphic function on the complex upper half-plane, \mathcal, that roughly satisfies a functional equation with respect to the group action of the modular group and a growth condition. The theory of modular forms has origins in complex analysis, with important connections with number theory. Modular forms also appear in other areas, such as algebraic topology, sphere packing, and string theory. Modular form theory is a special case of the more general theory of automorphic forms, which are functions defined on Lie groups that transform nicely with respect to the action of certain discrete subgroups, generalizing the example of the modular group \mathrm_2(\mathbb Z) \subset \mathrm_2(\mathbb R). Every modular form is attached to a Galois representation. The term "modular form", as a systematic description, is usually attributed to Erich Hecke. The importance of modular forms across multiple field of mathematics has been humorously re ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Dirichlet L-function
In mathematics, a Dirichlet L-series is a function of the form :L(s,\chi) = \sum_^\infty \frac. where \chi is a Dirichlet character and s a complex variable with real part greater than 1 . It is a special case of a Dirichlet series. By analytic continuation, it can be extended to a meromorphic function on the whole complex plane, and is then called a Dirichlet L -function and also denoted L ( s , \chi) . These functions are named after Peter Gustav Lejeune Dirichlet who introduced them in to prove the Dirichlet's theorem on arithmetic progressions, theorem on primes in arithmetic progressions that also bears his name. In the course of the proof, Dirichlet shows that L ( s , \chi) is non-zero at s = 1 . Moreover, if \chi is principal, then the corresponding Dirichlet L -function has a simple pole at s = 1 . Otherwise, the L -function is entire function, entire. Euler product Since a Dirichlet character \chi is completely multiplicative, its L -function can also ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fourier Transform On Finite Groups
In mathematics, the Fourier transform on finite groups is a generalization of the discrete Fourier transform from cyclic to arbitrary finite groups. Definitions The Fourier transform of a function f : G \to \Complex at a representation \varrho : G \to \mathrm_(\Complex) of G is \widehat(\varrho) = \sum_ f(a) \varrho(a). For each representation \varrho of G, \widehat(\varrho) is a d_\varrho \times d_\varrho matrix, where d_\varrho is the degree of \varrho. Let \widehat be the complete set of inequivalent irreducible representations of G. Then the inverse Fourier transform at an element a of G is given by f(a) = \frac \sum_ d_ \mathrm\left(\varrho(a^)\widehat(\varrho)\right). Properties Transform of a convolution The convolution of two functions f, g : G \to \mathbb is defined as (f \ast g)(a) = \sum_ f\!\left(ab^\right) g(b). The Fourier transform of a convolution at any representation \varrho of G is given by \widehat(\varrho) = \hat(\varrho)\hat(\varrho). Pla ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Indicator Function
In mathematics, an indicator function or a characteristic function of a subset of a set is a function that maps elements of the subset to one, and all other elements to zero. That is, if is a subset of some set , then the indicator function of is the function \mathbf_A defined by \mathbf_\!(x) = 1 if x \in A, and \mathbf_\!(x) = 0 otherwise. Other common notations are and \chi_A. The indicator function of is the Iverson bracket of the property of belonging to ; that is, \mathbf_(x) = \left x\in A\ \right For example, the Dirichlet function is the indicator function of the rational numbers as a subset of the real numbers. Definition Given an arbitrary set , the indicator function of a subset of is the function \mathbf_A \colon X \mapsto \ defined by \operatorname\mathbf_A\!( x ) = \begin 1 & \text x \in A \\ 0 & \text x \notin A \,. \end The Iverson bracket provides the equivalent notation \left x\in A\ \right/math> or that can be used instead of \mathbf_\ ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Group (mathematics)
In mathematics, a group is a Set (mathematics), set with an Binary operation, operation that combines any two elements of the set to produce a third element within the same set and the following conditions must hold: the operation is Associative property, associative, it has an identity element, and every element of the set has an inverse element. For example, the integers with the addition, addition operation form a group. The concept of a group was elaborated for handling, in a unified way, many mathematical structures such as numbers, geometric shapes and polynomial roots. Because the concept of groups is ubiquitous in numerous areas both within and outside mathematics, some authors consider it as a central organizing principle of contemporary mathematics. In geometry, groups arise naturally in the study of symmetries and geometric transformations: The symmetries of an object form a group, called the symmetry group of the object, and the transformations of a given type form a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Relation To Group Characters
Relation or relations may refer to: General uses * International relations, the study of interconnection of politics, economics, and law on a global level * Interpersonal relationship, association or acquaintance between two or more people * Public relations, managing the spread of information to the public * Sexual relations, or human sexual activity * Social relation, in social science, any social interaction between two or more individuals Logic and philosophy * Relation (philosophy), links between properties of an object * Relational theory, framework to understand reality or a physical system Mathematics A finitary or ''n''-ary relation is a set of ''n''-tuples. Specific types of relations include: * Relation (mathematics) (an elementary treatment of binary relations) * Binary relation (or diadic relation – a more in-depth treatment of binary relations) * Equivalence relation * Homogeneous relation * Reflexive relation * Serial relation * Ternary relation (or tri ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Chinese Remainder Theorem
In mathematics, the Chinese remainder theorem states that if one knows the remainders of the Euclidean division of an integer ''n'' by several integers, then one can determine uniquely the remainder of the division of ''n'' by the product of these integers, under the condition that the divisors are pairwise coprime (no two divisors share a common factor other than 1). The theorem is sometimes called Sunzi's theorem. Both names of the theorem refer to its earliest known statement that appeared in '' Sunzi Suanjing'', a Chinese manuscript written during the 3rd to 5th century CE. This first statement was restricted to the following example: If one knows that the remainder of ''n'' divided by 3 is 2, the remainder of ''n'' divided by 5 is 3, and the remainder of ''n'' divided by 7 is 2, then with no other information, one can determine the remainder of ''n'' divided by 105 (the product of 3, 5, and 7) without knowing the value of ''n''. In this example, the remainder is 23. More ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Primitive Root Modulo N
In modular arithmetic, a number is a primitive root modulo if every number coprime to is congruent to a power of modulo . That is, is a ''primitive root modulo'' if for every integer coprime to , there is some integer for which ≡ (mod ). Such a value is called the index or discrete logarithm of to the base modulo . So is a ''primitive root modulo'' if and only if is a generator of the multiplicative group of integers modulo . Gauss defined primitive roots in Article 57 of the '' Disquisitiones Arithmeticae'' (1801), where he credited Euler with coining the term. In Article 56 he stated that Lambert and Euler knew of them, but he was the first to rigorously demonstrate that primitive roots exist for a prime . In fact, the ''Disquisitiones'' contains two proofs: The one in Article 54 is a nonconstructive existence proof, while the proof in Article 55 is constructive. A primitive root exists if and only if ''n'' is 1, 2, 4, ''p''''k'' ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Complex Conjugate
In mathematics, the complex conjugate of a complex number is the number with an equal real part and an imaginary part equal in magnitude but opposite in sign. That is, if a and b are real numbers, then the complex conjugate of a + bi is a - bi. The complex conjugate of z is often denoted as \overline or z^*. In polar form, if r and \varphi are real numbers then the conjugate of r e^ is r e^. This can be shown using Euler's formula. The product of a complex number and its conjugate is a real number: a^2 + b^2 (or r^2 in polar coordinates). If a root of a univariate polynomial with real coefficients is complex, then its complex conjugate is also a root. Notation The complex conjugate of a complex number z is written as \overline z or z^*. The first notation, a vinculum, avoids confusion with the notation for the conjugate transpose of a matrix, which can be thought of as a generalization of the complex conjugate. The second is preferred in physics, where ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Root Of Unity
In mathematics, a root of unity is any complex number that yields 1 when exponentiation, raised to some positive integer power . Roots of unity are used in many branches of mathematics, and are especially important in number theory, the theory of group characters, and the discrete Fourier transform. It is occasionally called a de Moivre number after French mathematician Abraham de Moivre. Roots of unity can be defined in any field (mathematics), field. If the characteristic of a field, characteristic of the field is zero, the roots are complex numbers that are also algebraic integers. For fields with a positive characteristic, the roots belong to a finite field, and, converse (logic), conversely, every nonzero element of a finite field is a root of unity. Any algebraically closed field contains exactly th roots of unity, except when is a multiple of the (positive) characteristic of the field. General definition An ''th root of unity'', where is a positive integer, is a nu ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |