HOME
*





Cyclohexa-1,4-diene
1,4-Cyclohexadiene is an organic compound with the formula C6H8. It is a colourless, flammable liquid that is of academic interest as a prototype of a large class of related compounds called terpenoids, an example being γ-terpinene. An isomer of this compound is 1,3-cyclohexadiene. Synthesis and reactions In the laboratory, substituted 1,4-cyclohexadienes are synthesized by Birch reduction of related aromatic compounds using an alkali metal dissolved in liquid ammonia and a proton donor such as an alcohol. In this way, over reduction to the fully saturated ring is avoided. 1,4-Cyclohexadiene and its derivatives are easily aromatized, the driving force being the formation of an aromatic ring. The conversion to an aromatic system may be used to trigger other reactions, such as the Bergman cyclization The Masamune-Bergman cyclization or Masamune-Bergman reaction or Masamune-Bergman cycloaromatization is an organic reaction and more specifically a rearrangement reaction taking ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Terpenoid
The terpenoids, also known as isoprenoids, are a class of naturally occurring organic chemicals derived from the 5-carbon compound isoprene and its derivatives called terpenes, diterpenes, etc. While sometimes used interchangeably with "terpenes", terpenoids contain additional functional groups, usually containing oxygen. When combined with the hydrocarbon terpenes, terpenoids comprise about 80,000 compounds. They are the largest class of plant secondary metabolites, representing about 60% of known natural products. Many terpenoids have substantial pharmacological bioactivity and are therefore of interest to medicinal chemists. Plant terpenoids are used for their aromatic qualities and play a role in traditional herbal remedies. Terpenoids contribute to the scent of eucalyptus, the flavors of cinnamon, cloves, and ginger, the yellow color in sunflowers, and the red color in tomatoes. Well-known terpenoids include citral, menthol, camphor, salvinorin A in the plant ''Salvia div ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Terpinene
The terpinenes are a group of isomeric hydrocarbons that are classified as monoterpenes. They each have the same molecular formula and carbon framework, but they differ in the position of carbon-carbon double bonds. α-Terpinene has been isolated from cardamom and marjoram oils, and from other natural sources. β-Terpinene has no known natural source but has been prepared from sabinene. γ-Terpinene and δ-terpinene (also known as terpinolene) have been isolated from a variety of plant sources. They are all colorless liquids with a turpentine-like odor. Production and uses α-Terpinene is produced industrially by acid-catalyzed rearrangement of α- pinene. It has perfume and flavoring properties but is mainly used to confer pleasant odor to industrial fluids. Hydrogenation gives the saturated derivative ''p''-menthane. Biosynthesis of α-terpinene The biosynthesis of α-terpinene and other terpenoids starts with the isomerization of geranyl pyrophosphate to linalyl pyr ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Isomer
In chemistry, isomers are molecules or polyatomic ions with identical molecular formulae – that is, same number of atoms of each element – but distinct arrangements of atoms in space. Isomerism is existence or possibility of isomers. Isomers do not necessarily share similar chemical or physical properties. Two main forms of isomerism are structural or constitutional isomerism, in which ''bonds'' between the atoms differ; and stereoisomerism or spatial isomerism, in which the bonds are the same but the ''relative positions'' of the atoms differ. Isomeric relationships form a hierarchy. Two chemicals might be the same constitutional isomer, but upon deeper analysis be stereoisomers of each other. Two molecules that are the same stereoisomer as each other might be in different conformational forms or be different isotopologues. The depth of analysis depends on the field of study or the chemical and physical properties of interest. The English word "isomer" () is a back ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


1,3-cyclohexadiene
Cyclohexa-1,3-diene is an organic compound with the formula (C2H4)(CH)4. It is a colorless, flammable liquid. Its refractive index is 1.475 (20 °C, D). A naturally occurring derivative of 1,3-cyclohexadiene is terpinene, a component of pine oil. Synthesis Cyclohexadiene is prepared by the dehydrobromination of 1,2-dibromocyclohexane: :(CH2)4(CHBr)2 + 2 NaH → (CH2)2(CH)4 + 2 NaBr + 2 H2 Reactions Useful reactions of this diene are cycloadditions, such as the Diels-Alder reaction. Conversion of cyclohexa-1,3-diene to benzene + hydrogen is exothermic by about 25 kJ/mol in the gas phase. :cyclohexane → cyclohexa-1,3-diene + 2 H2 (Δ''H'' = +231.5 kJ/mol; endothermic) :cyclohexane → benzene + 3 H2 (Δ''H'' = +205 kJ/mol; endothermic) :cyclohexa-1,3-diene → benzene + H2 (Δ''H'' = -26.5 kJ/mol; exothermic) Compared with its isomer cyclohexa-1,4-diene, cyclohexa-1,3-diene is about 1.6 kJ/mol more stable. Cyclohexadiene and its derivatives form metal-alkene complexes. Il ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Birch Reduction
The Birch reduction is an organic reaction that is used to convert arenes to cyclohexadienes. The reaction is named after the Australian chemist Arthur Birch and involves the organic reduction of aromatic rings in an amine solvent (traditionally liquid ammonia) with an alkali metal (traditionally sodium) and a proton source (traditionally an alcohol). Unlike catalytic hydrogenation, Birch reduction does not reduce the aromatic ring all the way to a cyclohexane. An example is the reduction of naphthalene in ammonia and ethanol: Reaction mechanism and regioselectivity A solution of sodium in liquid ammonia consists of the intensely blue electride salt a(NH3)xsup>+ e−. The solvated electrons add to the aromatic ring to give a radical anion, which then abstracts a proton from the alcohol. The process then repeats at either the ''ortho'' or ''para'' position (depending on substituents) to give the final diene. The residual double bonds do not stabilize further radi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bergman Cyclization
The Masamune-Bergman cyclization or Masamune-Bergman reaction or Masamune-Bergman cycloaromatization is an organic reaction and more specifically a rearrangement reaction taking place when an enediyne is heated in presence of a suitable hydrogen donor (''Scheme 1''). It is the most famous and well-studied member of the general class of cycloaromatization reactions. It is named for Japanese-American chemist Satoru Masamune (b. 1928) and American chemist Robert G. Bergman (b. 1942). The reaction product is a derivative of benzene. The reaction proceeds by a thermal reaction or pyrolysis (above 200 °C) forming a short-lived and very reactive para-benzyne biradical species. It will react with any hydrogen donor such as 1,4-cyclohexadiene which converts to benzene. When quenched by tetrachloromethane the reaction product is a 1,4-dichlorobenzene and with methanol the reaction product is benzyl alcohol. When the enyne moiety is incorporated into a 10-membered hydrocarbon ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]