HOME
*



picture info

Cotes Spiral
Introduction In physics and in the mathematics of plane curves, a Cotes's spiral (also written Cotes' spiral and Cotes spiral) is one of a family of spirals classified by Roger Cotes. Cotes introduces his analysis of these curves as follows: “It is proposed to list the different types of trajectories which bodies can move along when acted on by centripetal forces in the inverse ratio of the cubes of their distances, proceeding from a given place, with given speed, and direction.” (N. b. he does not describe them as spirals). The shape of spirals in the family depends on the parameters. The curves in polar coordinates, (''r'', ''θ''), ''r'' > 0 are defined by one of the following five equations: : \frac = \begin A \cosh(k\theta + \varepsilon) \\ A \exp(k\theta + \varepsilon) \\ A \sinh(k\theta + \varepsilon) \\ A (k\theta + \varepsilon) \\ A \cos(k\theta + \varepsilon) \\ \end ''A'' > 0, ''k'' > 0 and ''ε'' are arbitrary real number constants. ''A'' determines th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Physics
Physics is the natural science that studies matter, its fundamental constituents, its motion and behavior through space and time, and the related entities of energy and force. "Physical science is that department of knowledge which relates to the order of nature, or, in other words, to the regular succession of events." Physics is one of the most fundamental scientific disciplines, with its main goal being to understand how the universe behaves. "Physics is one of the most fundamental of the sciences. Scientists of all disciplines use the ideas of physics, including chemists who study the structure of molecules, paleontologists who try to reconstruct how dinosaurs walked, and climatologists who study how human activities affect the atmosphere and oceans. Physics is also the foundation of all engineering and technology. No engineer could design a flat-screen TV, an interplanetary spacecraft, or even a better mousetrap without first understanding the basic laws of phys ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Specific Relative Angular Momentum
In celestial mechanics, the specific relative angular momentum (often denoted \vec or \mathbf) of a body is the angular momentum of that body divided by its mass. In the case of two orbiting bodies it is the vector product of their relative position and relative linear momentum, divided by the mass of the body in question. Specific relative angular momentum plays a pivotal role in the analysis of the two-body problem, as it remains constant for a given orbit under ideal conditions. "Specific" in this context indicates angular momentum per unit mass. The SI unit for specific relative angular momentum is square meter per second. Definition The specific relative angular momentum is defined as the cross product of the relative position vector \mathbf and the relative velocity vector \mathbf . \mathbf = \mathbf\times \mathbf = \frac where \mathbf is the angular momentum vector, defined as \mathbf \times m \mathbf. The \mathbf vector is always perpendicular to the instantaneou ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Bertrand's Theorem
In classical mechanics, Bertrand's theorem states that among central-force potentials with bound orbits, there are only two types of central-force (radial) scalar potentials with the property that all bound orbits are also closed orbits. The first such potential is an inverse-square central force such as the gravitational or electrostatic potential: : V(r) = -\frac with force f(r) = -\frac = -\frac. The second is the radial harmonic oscillator potential: : V(r) = \frac kr^2 with force f(r) = -\frac = -kr. The theorem is named after its discoverer, Joseph Bertrand. Derivation All attractive central forces can produce circular orbits, which are naturally closed orbits. The only requirement is that the central force exactly equals the centripetal force, which determines the required angular velocity for a given circular radius. Non-central forces (i.e., those that depend on the angular variables as well as the radius) are ignored here, since they do not produce circula ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Newton's Theorem Of Revolving Orbits
In classical mechanics, Newton's theorem of revolving orbits identifies the type of central force needed to multiply the angular speed of a particle by a factor ''k'' without affecting its radial motion (Figures 1 and 2). Newton applied his theorem to understanding the overall rotation of orbits (''apsidal precession'', Figure 3) that is observed for the Moon and planets. The term "radial motion" signifies the motion towards or away from the center of force, whereas the angular motion is perpendicular to the radial motion. Isaac Newton derived this theorem in Propositions 43–45 of Book I of his '' Philosophiæ Naturalis Principia Mathematica'', first published in 1687. In Proposition 43, he showed that the added force must be a central force, one whose magnitude depends only upon the distance ''r'' between the particle and a point fixed in space (the center). In Proposition 44, he derived a formula for the force, showing that it was an inverse-cube force, one that ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hyperbolic Spiral
A hyperbolic spiral is a plane curve, which can be described in polar coordinates by the equation :r=\frac of a hyperbola In mathematics, a hyperbola (; pl. hyperbolas or hyperbolae ; adj. hyperbolic ) is a type of smooth curve lying in a plane, defined by its geometric properties or by equations for which it is the solution set. A hyperbola has two pieces, ca .... Because it can be generated by a circle inversion of an Archimedean spiral, it is called Reciprocal spiral, too.. Pierre Varignon first studied the curve in 1704. Later Johann Bernoulli and Roger Cotes worked on the curve as well. The hyperbolic spiral has a pitch angle that increases with distance from its center, unlike the logarithmic spiral (in which the angle is constant) or Archimedean spiral (in which it decreases with distance). For this reason, it has been used to model the shapes of spiral galaxies, which in some cases similarly have an increasing pitch angle. However, this model does not prov ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Archimedean Spiral
The Archimedean spiral (also known as the arithmetic spiral) is a spiral named after the 3rd-century BC Greek mathematician Archimedes. It is the locus corresponding to the locations over time of a point moving away from a fixed point with a constant speed along a line that rotates with constant angular velocity. Equivalently, in polar coordinates it can be described by the equation r = a + b\cdot\theta with real numbers and . Changing the parameter moves the centerpoint of the spiral outward from the origin (positive toward and negative toward ) essentially through a rotation of the spiral, while controls the distance between loops. From the above equation, it can thus be stated: position of particle from point of start is proportional to angle as time elapses. Archimedes described such a spiral in his book '' On Spirals''. Conon of Samos was a friend of his and Pappus states that this spiral was discovered by Conon. Derivation of general equation of spiral ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Logarithmic Spiral
A logarithmic spiral, equiangular spiral, or growth spiral is a self-similar spiral curve that often appears in nature. The first to describe a logarithmic spiral was Albrecht Dürer (1525) who called it an "eternal line" ("ewige Linie"). More than a century later, the curve was discussed by Descartes (1638), and later extensively investigated by Jacob Bernoulli, who called it ''Spira mirabilis'', "the marvelous spiral". The logarithmic spiral can be distinguished from the Archimedean spiral by the fact that the distances between the turnings of a logarithmic spiral increase in geometric progression, while in an Archimedean spiral these distances are constant. Definition In polar coordinates (r, \varphi) the logarithmic spiral can be written as r = ae^,\quad \varphi \in \R, or \varphi = \frac \ln \frac, with e being the base of natural logarithms, and a > 0, k\ne 0 being real constants. In Cartesian coordinates The logarithmic spiral with the polar equation r = a e^ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

A Treatise On The Analytical Dynamics Of Particles And Rigid Bodies
''A Treatise on the Analytical Dynamics of Particles and Rigid Bodies'' is a treatise and textbook on analytical dynamics by British mathematician Sir Edmund Taylor Whittaker. Initially published in 1904 by the Cambridge University Press, the book focuses heavily on the three-body problem and has since gone through four editions and has been translated to German and Russian. Considered a landmark book in English mathematics and physics, the treatise presented what was the state-of-the-art at the time of publication and, remaining in print for more than a hundred years, it is considered a classic textbook in the subject. Section 1 ''Introduction'' In addition to the original editions published in 1904, 1917, 1927, and 1937, a reprint of the fourth edition was released in 1989 with a new foreword by William Hunter McCrea. The book was very successful and received many positive reviews. A 2014 "biography" of the book's development wrote that it had "remarkable longevity" and note ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Samuel Earnshaw
Samuel Earnshaw (1 February 1805, Sheffield, Yorkshire – 6 December 1888, Sheffield, Yorkshire) was an English clergyman and mathematician and physicist, noted for his contributions to theoretical physics, especially " Earnshaw's theorem". Earnshaw was born in Sheffield and entered St John's College, Cambridge, graduating Senior Wrangler and Smith's Prize The Smith's Prize was the name of each of two prizes awarded annually to two research students in mathematics and theoretical physics at the University of Cambridge from 1769. Following the reorganization in 1998, they are now awarded under the ...man in 1831. From 1831 to 1847 Earnshaw worked in Cambridge as tripos coach, and in 1846 was appointed to the parish church St. Michael, Cambridge. For a time he acted as curate to the Revd Charles Simeon. In 1847 his health broke down and he returned to Sheffield working as a chaplain and teacher. Earnshaw published several mathematical and physical articles and books. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Isaac Newton
Sir Isaac Newton (25 December 1642 – 20 March 1726/27) was an English mathematician, physicist, astronomer, alchemist, Theology, theologian, and author (described in his time as a "natural philosophy, natural philosopher"), widely recognised as one of the greatest mathematicians and physicists and among the most influential scientists of all time. He was a key figure in the philosophical revolution known as the Age of Enlightenment, Enlightenment. His book (''Mathematical Principles of Natural Philosophy''), first published in 1687, established classical mechanics. Newton also made seminal contributions to optics, and Multiple discovery, shares credit with German mathematician Gottfried Wilhelm Leibniz for developing calculus, infinitesimal calculus. In the , Newton formulated the Newton's laws of motion, laws of motion and Newton's law of universal gravitation, universal gravitation that formed the dominant scientific viewpoint for centuries until it was supersede ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Philosophiæ Naturalis Principia Mathematica
(English: ''Mathematical Principles of Natural Philosophy'') often referred to as simply the (), is a book by Isaac Newton that expounds Newton's laws of motion and his law of universal gravitation. The ''Principia'' is written in Latin and comprises three volumes, and was first published on 5 July 1687. The is considered one of the most important works in the history of science. The French mathematical physicist Alexis Clairaut assessed it in 1747: "The famous book of ''Mathematical Principles of Natural Philosophy'' marked the epoch of a great revolution in physics. The method followed by its illustrious author Sir Newton ... spread the light of mathematics on a science which up to then had remained in the darkness of conjectures and hypotheses." A more recent assessment has been that while acceptance of Newton's laws was not immediate, by the end of the century after publication in 1687, "no one could deny that" (out of the ) "a science had emerged that, at least in ce ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lituus (mathematics)
300px, Branch for positive In mathematics, a lituus is a spiral with polar equation :r^2\theta = k where is any non-zero constant. Thus, the angle is inversely proportional to the square of the radius In classical geometry, a radius (plural, : radii) of a circle or sphere is any of the line segments from its Centre (geometry), center to its perimeter, and in more modern usage, it is also their length. The name comes from the latin ''radius'', ... . This spiral, which has two branches depending on the sign of , is asymptotic to the -axis. Its points of inflexion are at :(\theta, r) = \left(\tfrac12, \pm\sqrt\right). The curve was named for the ancient Roman lituus by Roger Cotes in a collection of papers entitled ''Harmonia Mensurarum'' (1722), which was published six years after his death. External links * * Interactive example using JSXGraph* * https://hsm.stackexchange.com/a/3181 on the history of the lituus curve. Spirals Plane curves {{geometry- ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]