Potentials
   HOME





Potentials
Potential generally refers to a currently unrealized ability, in a wide variety of fields from physics to the social sciences. Mathematics and physics * Scalar potential, a scalar field whose gradient is a given vector field * Vector potential, a vector field whose curl is a given vector field * Potential function (other) * Potential variable (Boolean differential calculus) * Potential energy, the energy possessed by an object because of its position relative to other objects, stresses within itself, its electric charge, or other factors * Magnetic vector potential * Magnetic scalar potential (ψ) * Electric potential, the amount of work needed to move a unit positive charge from a reference point to a specific point inside the field without producing any acceleration * Electromagnetic four-potential, a relativistic vector function from which the electromagnetic field can be derived * Coulomb potential * Van der Waals force, distance-dependent interactions between atoms ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Action Potential
An action potential (also known as a nerve impulse or "spike" when in a neuron) is a series of quick changes in voltage across a cell membrane. An action potential occurs when the membrane potential of a specific Cell (biology), cell rapidly rises and falls. This depolarization then causes adjacent locations to similarly depolarize. Action potentials occur in several types of Membrane potential#Cell excitability, excitable cells, which include animal cells like neurons and myocyte, muscle cells, as well as some plant cells. Certain endocrine cells such as pancreatic beta cells, and certain cells of the anterior pituitary gland are also excitable cells. In neurons, action potentials play a central role in cell–cell interaction, cell–cell communication by providing for—or with regard to saltatory conduction, assisting—the propagation of signals along the neuron's axon toward axon terminal, synaptic boutons situated at the ends of an axon; these signals can then connect wit ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Potential And New Slayers
A Slayer in the television series ''Buffy the Vampire Slayer'' and ''Angel'' (both created by Joss Whedon), is a young woman bestowed by fate with supernatural powers and abilities that originate from the heart, soul, and spirit of a pure-demon. The opening narration in the Buffy series states "''In every generation there is a chosen one. She alone will stand against the vampires, the demons, and the forces of darkness. She is the Slayer.''" While they are commonly referred to as "Vampire Slayers" within the series, even by Watchers and vampires themselves, The Slayer operates as a defender of humanity against all supernatural threats. The reputation of the Slayer is well-known and revered even throughout other dimensions. The notion of the Slayer has been compared to the equivalent of a Demonic "Boogey-Man", incredibly feared and considered by most to be essentially unconquerable. Reception and analysis Rhonda Wilcox explains that the First Slayer was violated by the Shadow ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Electric Potential
Electric potential (also called the ''electric field potential'', potential drop, the electrostatic potential) is defined as electric potential energy per unit of electric charge. More precisely, electric potential is the amount of work (physics), work needed to move a test charge from a reference point to a specific point in a static electric field. The test charge used is small enough that disturbance to the field is unnoticeable, and its motion across the field is supposed to proceed with negligible acceleration, so as to avoid the test charge acquiring kinetic energy or producing radiation. By definition, the electric potential at the reference point is zero units. Typically, the reference point is Earth (electricity), earth or a point at infinity, although any point can be used. In classical electrostatics, the electrostatic field is a vector quantity expressed as the gradient of the electrostatic potential, which is a scalar (physics), scalar quantity denoted by or occasi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Potential
Potential generally refers to a currently unrealized ability. The term is used in a wide variety of fields, from physics to the social sciences to indicate things that are in a state where they are able to change in ways ranging from the simple release of energy by objects to the realization of abilities in people. The philosopher Aristotle incorporated this concept into his theory of potentiality and actuality (in Greek, ''dynamis'' and ''energeia''), translated into Latin as ''potentia'' and ''actualitas'' (earlier also ''possibilitas'' and ''efficacia''). a pair of closely connected principles which he used to analyze motion, causality, ethics, and physiology in his ''Physics'', ''Metaphysics'', ''Nicomachean Ethics'', and '' De Anima'', which is about the human psyche. That which is potential can theoretically be made actual by taking the right action; for example, a boulder on the edge of a cliff has potential to fall that could be actualized by pushing it over the edge. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Potential Energy
In physics, potential energy is the energy of an object or system due to the body's position relative to other objects, or the configuration of its particles. The energy is equal to the work done against any restoring forces, such as gravity or those in a spring. The term ''potential energy'' was introduced by the 19th-century Scottish engineer and physicist William Rankine, although it has links to the ancient Greek philosopher Aristotle's concept of Potentiality and Actuality, ''potentiality''. Common types of potential energy include gravitational potential energy, the elastic potential energy of a deformed spring, and the electric potential energy of an electric charge and an electric field. The unit for energy in the International System of Units (SI) is the joule (symbol J). Potential energy is associated with forces that act on a body in a way that the total Work (physics), work done by these forces on the body depends only on the initial and final positions of the b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Magnetic Vector Potential
In classical electromagnetism, magnetic vector potential (often denoted A) is the vector quantity defined so that its curl is equal to the magnetic field, B: \nabla \times \mathbf = \mathbf. Together with the electric potential ''φ'', the magnetic vector potential can be used to specify the electric field E as well. Therefore, many equations of electromagnetism can be written either in terms of the fields E and B, or equivalently in terms of the potentials ''φ'' and A. In more advanced theories such as quantum mechanics, most equations use potentials rather than fields. Magnetic vector potential was independently introduced by Franz Ernst Neumann and Wilhelm Eduard Weber in 1845 and in 1846, respectively to discuss Ampère's circuital law. William Thomson also introduced the modern version of the vector potential in 1847, along with the formula relating it to the magnetic field. Unit conventions This article uses the SI system. In the SI system, the units of A are ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Magnetic Scalar Potential
Magnetic scalar potential, ''ψ'', is a quantity in classical electromagnetism analogous to electric potential. It is used to specify the magnetic H-field in cases when there are no free currents, in a manner analogous to using the electric potential to determine the electric field in electrostatics. One important use of ''ψ'' is to determine the magnetic field due to permanent magnets when their magnetization is known. The potential is valid in any simply connected region with zero current density, thus if currents are confined to wires or surfaces, piecemeal solutions can be stitched together to provide a description of the magnetic field at all points in space. Magnetic scalar potential The scalar potential is a useful quantity in describing the magnetic field, especially for permanent magnets. Where there is no free current, \nabla\times\mathbf = \mathbf, so if this holds in simply connected domain we can define a , , as \mathbf = -\nabla\psi. The dimension of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Water Potential
Water potential is the potential energy of water per unit volume relative to pure water in reference conditions. Water potential quantifies the tendency of water to move from one area to another due to osmosis, gravity, mechanical pressure and matrix effects such as capillary action (which is caused by surface tension). The concept of water potential has proved useful in understanding and computing water movement within plants, animals, and soil. Water potential is typically expressed in potential energy per unit volume and very often is represented by the Greek letter ψ. Water potential integrates a variety of different potential drivers of water movement, which may operate in the same or different directions. Within complex biological systems, many potential factors may be operating simultaneously. For example, the addition of solutes lowers the potential (negative vector), while an increase in pressure increases the potential (positive vector). If the flow is not restricted ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Van Der Waals Force
In molecular physics and chemistry, the van der Waals force (sometimes van der Waals' force) is a distance-dependent interaction between atoms or molecules. Unlike ionic or covalent bonds, these attractions do not result from a chemical electronic bond; they are comparatively weak and therefore more susceptible to disturbance. The van der Waals force quickly vanishes at longer distances between interacting molecules. Named after Dutch physicist Johannes Diderik van der Waals, the van der Waals force plays a fundamental role in fields as diverse as supramolecular chemistry, structural biology, polymer science, nanotechnology, surface science, and condensed matter physics. It also underlies many properties of organic compounds and molecular solids, including their solubility in polar and non-polar media. If no other force is present, the distance between atoms at which the force becomes repulsive rather than attractive as the atoms approach one another is called the van der ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Scalar Potential
In mathematical physics, scalar potential describes the situation where the difference in the potential energies of an object in two different positions depends only on the positions, not upon the path taken by the object in traveling from one position to the other. It is a scalar field in three-space: a directionless value ( scalar) that depends only on its location. A familiar example is potential energy due to gravity. A ''scalar potential'' is a fundamental concept in vector analysis and physics (the adjective ''scalar'' is frequently omitted if there is no danger of confusion with '' vector potential''). The scalar potential is an example of a scalar field. Given a vector field , the scalar potential is defined such that: \mathbf = -\nabla P = - \left( \frac, \frac, \frac \right), where is the gradient of and the second part of the equation is minus the gradient for a function of the Cartesian coordinates . In some cases, mathematicians may use a positive sign ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]