HOME





Cokernel
The cokernel of a linear mapping of vector spaces is the quotient space of the codomain of by the image of . The dimension of the cokernel is called the ''corank'' of . Cokernels are dual to the kernels of category theory, hence the name: the kernel is a subobject of the domain (it maps to the domain), while the cokernel is a quotient object of the codomain (it maps from the codomain). Intuitively, given an equation that one is seeking to solve, the cokernel measures the ''constraints'' that must satisfy for this equation to have a solution – the obstructions to a solution – while the kernel measures the ''degrees of freedom'' in a solution, if one exists. This is elaborated in intuition, below. More generally, the cokernel of a morphism in some category (e.g. a homomorphism between groups or a bounded linear operator between Hilbert spaces) is an object and a morphism such that the composition is the zero morphism of the category, and furthermore is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Linear Mapping
In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a Map (mathematics), mapping V \to W between two vector spaces that preserves the operations of vector addition and scalar multiplication. The same names and the same definition are also used for the more general case of module (mathematics), modules over a ring (mathematics), ring; see Module homomorphism. If a linear map is a bijection then it is called a . In the case where V = W, a linear map is called a linear endomorphism. Sometimes the term refers to this case, but the term "linear operator" can have different meanings for different conventions: for example, it can be used to emphasize that V and W are Real number, real vector spaces (not necessarily with V = W), or it can be used to emphasize that V is a function space, which is a common convention in functional analysis. Sometimes ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Kernel (category Theory)
In category theory and its applications to other branches of mathematics, kernels are a generalization of the kernels of group homomorphisms, the kernels of module homomorphisms and certain other kernel (algebra), kernels from algebra. Intuitively, the kernel of the morphism ''f'' : ''X'' → ''Y'' is the "most general" morphism ''k'' : ''K'' → ''X'' that yields zero when composed with (followed by) ''f''. Note that kernel pairs and difference kernels (also known as binary Equaliser (mathematics), equalisers) sometimes go by the name "kernel"; while related, these aren't quite the same thing and are not discussed in this article. Definition Let C be a category theory, category. In order to define a kernel in the general category-theoretical sense, C needs to have zero morphisms. In that case, if ''f'' : ''X'' → ''Y'' is an arbitrary morphism in C, then a kernel of ''f'' is an Equaliser (mathematics), equaliser of ''f'' and the zero morphism from ''X'' to ''Y''. In symbols: : ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Coequalizer
In category theory, a coequalizer (or coequaliser) is a generalization of a quotient by an equivalence relation to objects in an arbitrary category. It is the categorical construction dual to the equalizer. Definition A coequalizer is the colimit of a diagram consisting of two objects ''X'' and ''Y'' and two parallel morphisms . More explicitly, a coequalizer of the parallel morphisms ''f'' and ''g'' can be defined as an object ''Q'' together with a morphism such that . Moreover, the pair must be universal in the sense that given any other such pair (''Q''′, ''q''′) there exists a unique morphism such that . This information can be captured by the following commutative diagram: As with all universal constructions, a coequalizer, if it exists, is unique up to a unique isomorphism (this is why, by abuse of language, one sometimes speaks of "the" coequalizer of two parallel arrows). It can be shown that a coequalizing arrow ''q'' is an epimorphism in any ca ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Homomorphism
In algebra, a homomorphism is a morphism, structure-preserving map (mathematics), map between two algebraic structures of the same type (such as two group (mathematics), groups, two ring (mathematics), rings, or two vector spaces). The word ''homomorphism'' comes from the Ancient Greek language: () meaning "same" and () meaning "form" or "shape". However, the word was apparently introduced to mathematics due to a (mis)translation of German meaning "similar" to meaning "same". The term "homomorphism" appeared as early as 1892, when it was attributed to the German mathematician Felix Klein (1849–1925). Homomorphisms of vector spaces are also called linear maps, and their study is the subject of linear algebra. The concept of homomorphism has been generalized, under the name of morphism, to many other structures that either do not have an underlying set, or are not algebraic. This generalization is the starting point of category theory. A homomorphism may also be an isomorphis ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hilbert Space
In mathematics, a Hilbert space is a real number, real or complex number, complex inner product space that is also a complete metric space with respect to the metric induced by the inner product. It generalizes the notion of Euclidean space. The inner product allows lengths and angles to be defined. Furthermore, Complete metric space, completeness means that there are enough limit (mathematics), limits in the space to allow the techniques of calculus to be used. A Hilbert space is a special case of a Banach space. Hilbert spaces were studied beginning in the first decade of the 20th century by David Hilbert, Erhard Schmidt, and Frigyes Riesz. They are indispensable tools in the theories of partial differential equations, mathematical formulation of quantum mechanics, quantum mechanics, Fourier analysis (which includes applications to signal processing and heat transfer), and ergodic theory (which forms the mathematical underpinning of thermodynamics). John von Neumann coined the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Universal Property
In mathematics, more specifically in category theory, a universal property is a property that characterizes up to an isomorphism the result of some constructions. Thus, universal properties can be used for defining some objects independently from the method chosen for constructing them. For example, the definitions of the integers from the natural numbers, of the rational numbers from the integers, of the real numbers from the rational numbers, and of polynomial rings from the field (mathematics), field of their coefficients can all be done in terms of universal properties. In particular, the concept of universal property allows a simple proof that all constructions of real numbers are equivalent: it suffices to prove that they satisfy the same universal property. Technically, a universal property is defined in terms of category (mathematics), categories and functors by means of a universal morphism (see , below). Universal morphisms can also be thought more abstractly as Initia ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Abelian Group
In mathematics, an abelian group, also called a commutative group, is a group in which the result of applying the group operation to two group elements does not depend on the order in which they are written. That is, the group operation is commutative. With addition as an operation, the integers and the real numbers form abelian groups, and the concept of an abelian group may be viewed as a generalization of these examples. Abelian groups are named after the Norwegian mathematician Niels Henrik Abel. The concept of an abelian group underlies many fundamental algebraic structures, such as fields, rings, vector spaces, and algebras. The theory of abelian groups is generally simpler than that of their non-abelian counterparts, and finite abelian groups are very well understood and fully classified. Definition An abelian group is a set A, together with an operation ・ , that combines any two elements a and b of A to form another element of A, denoted a \cdot b. The sym ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Zero Morphism
In category theory, a branch of mathematics, a zero morphism is a special kind of morphism exhibiting properties like the morphisms to and from a zero object. Definitions Suppose C is a category, and ''f'' : ''X'' → ''Y'' is a morphism in C. The morphism ''f'' is called a constant morphism (or sometimes left zero morphism) if for any object ''W'' in C and any , ''fg'' = ''fh''. Dually, ''f'' is called a coconstant morphism (or sometimes right zero morphism) if for any object ''Z'' in C and any ''g'', ''h'' : ''Y'' → ''Z'', ''gf'' = ''hf''. A zero morphism is one that is both a constant morphism and a coconstant morphism. A category with zero morphisms is one where, for every two objects ''A'' and ''B'' in C, there is a fixed morphism 0''AB'' : ''A'' → ''B'', and this collection of morphisms is such that for all objects ''X'', ''Y'', ''Z'' in C and all morphisms ''f'' : ''Y'' → ''Z'', ''g'' : ''X'' → ''Y'', the following diagram commutes: The morphisms 0''XY'' necessari ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Universal Mapping Property
In mathematics, more specifically in category theory, a universal property is a property that characterizes up to an isomorphism the result of some constructions. Thus, universal properties can be used for defining some objects independently from the method chosen for constructing them. For example, the definitions of the integers from the natural numbers, of the rational numbers from the integers, of the real numbers from the rational numbers, and of polynomial rings from the field of their coefficients can all be done in terms of universal properties. In particular, the concept of universal property allows a simple proof that all constructions of real numbers are equivalent: it suffices to prove that they satisfy the same universal property. Technically, a universal property is defined in terms of categories and functors by means of a universal morphism (see , below). Universal morphisms can also be thought more abstractly as initial or terminal objects of a comma category ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Quotient Space (linear Algebra)
In linear algebra, the quotient of a vector space V by a subspace N is a vector space obtained by "collapsing" N to zero. The space obtained is called a quotient space and is denoted V/N (read "V mod N" or "V by N"). Definition Formally, the construction is as follows. Let V be a vector space over a field \mathbb, and let N be a subspace of V. We define an equivalence relation \sim on V by stating that x \sim y iff . That is, x is related to y if and only if one can be obtained from the other by adding an element of N. This definition implies that any element of N is related to the zero vector; more precisely, all the vectors in N get mapped into the equivalence class of the zero vector. The equivalence class – or, in this case, the coset – of x is defined as : := \ and is often denoted using the shorthand = x + N. The quotient space V/N is then defined as V/_\sim, the set of all equivalence classes induced by \sim on V. Scalar multiplication and addition are defin ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Morphism
In mathematics, a morphism is a concept of category theory that generalizes structure-preserving maps such as homomorphism between algebraic structures, functions from a set to another set, and continuous functions between topological spaces. Although many examples of morphisms are structure-preserving maps, morphisms need not to be maps, but they can be composed in a way that is similar to function composition. Morphisms and objects are constituents of a category. Morphisms, also called ''maps'' or ''arrows'', relate two objects called the ''source'' and the ''target'' of the morphism. There is a partial operation, called ''composition'', on the morphisms of a category that is defined if the target of the first morphism equals the source of the second morphism. The composition of morphisms behaves like function composition ( associativity of composition when it is defined, and existence of an identity morphism for every object). Morphisms and categories recur in much of co ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dual (category Theory)
In category theory, a branch of mathematics, duality is a correspondence between the properties of a category ''C'' and the dual properties of the opposite category ''C''op. Given a statement regarding the category ''C'', by interchanging the source and target of each morphism as well as interchanging the order of composing two morphisms, a corresponding dual statement is obtained regarding the opposite category ''C''op. (''C''op is composed by reversing every morphism of ''C''.) Duality, as such, is the assertion that truth is invariant under this operation on statements. In other words, if a statement ''S'' is true about ''C'', then its dual statement is true about ''C''op. Also, if a statement is false about ''C'', then its dual has to be false about ''C''op. (Compactly saying, ''S'' for ''C'' is true if and only if its dual for ''C''op is true.) Given a concrete category ''C'', it is often the case that the opposite category ''C''op per se is abstract. ''C''op need not b ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]