Chasman–Green Lattice
   HOME





Chasman–Green Lattice
The Chasman–Green lattice, also known as a double bend achromat lattice (DBA lattice), is a special magnetic lattice (accelerator), periodic arrangement of magnets designed by Renate Chasman and George Kenneth Green of Brookhaven National Laboratory in the mid-1970s for synchrotrons. This lattice provides optimized bending and focusing of electrons in storage rings designed for synchrotron light sources. An electron storage ring constructed with a Chasman–Green lattice has the important property that the circulating Charged particle beam, electron beams have very low beam emittance, emittance, which results in the emission of synchrotron radiation, synchrotron light of exceptional brightness. For this reason it is the lattice of choice for most of the premier synchrotron light source facilities worldwide. Each period of the Chasman–Green lattice contains a focusing quadrupole magnet symmetrically located between a pair of identical dipole magnets, which transports incident el ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Magnetic Lattice (accelerator)
In accelerator physics, a magnetic lattice is a composition of electromagnets at given longitudinal positions around the vacuum tube of a particle accelerator, and thus along the path of the enclosed charged particle beam. The lattice properties have a large influence on the properties of the particle beam, which is shaped by magnetic fields. Lattices can be closed (cyclic accelerators like the synchrotrons), linear (for linac facilities) and are also used at interconnects between different accelerator structures (transfer beamlines). Such a structure is needed for focusing of the particle beam in modern, large-scale facilities. Its basic elements are dipole magnets for deflection, quadrupole magnets for strong focusing, sextupole magnets for correction of chromatic aberration In optics, chromatic aberration (CA), also called chromatic distortion, color aberration, color fringing, or purple fringing, is a failure of a lens to focus all colors to the same point. It is caused by ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Renate Chasman
Renate Wiener Chasman (January 10, 1932 – October 17, 1977) was a physicist. She was born Renate Wiener to German Jewish parents in Berlin. Her father, Hans Wiener, was a founder of the Social Democratic Party of Germany. In 1938, the Wiener family fled Nazi Germany through the Netherlands , Terminology of the Low Countries, informally Holland, is a country in Northwestern Europe, with Caribbean Netherlands, overseas territories in the Caribbean. It is the largest of the four constituent countries of the Kingdom of the Nether ... to Sweden, where Wiener grew up and attended school in Stockholm. Wiener and her sister Edith went to Israel to attend Hebrew University of Jerusalem. Wiener graduated in 1955 with a M.Sc. in physics with minors in chemistry and mathematics. She earned her PhD in experimental physics in 1959. Her doctoral thesis demonstrated that a pseudoscalar component was not involved in Parity (physics), parity Conservation law (physics), nonconservation ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


George Kenneth Green
George Kenneth Green (1911 – August 15, 1977) was an American accelerator physicist. Green studied at the University of California, Berkeley, where he belonged to the group of Ernest Lawrence. Later, he worked at Brookhaven National Laboratory (BNL) with Milton Stanley Livingston. After the discovery of Strong focusing by Ernest Courant et al., Green implemented the idea into the design of the Alternating Gradient Synchrotron, collaborating with John Blewett. He was later working on the proposal for the National Synchrotron Light Source, which construction was begun in 1978. Collaborating with Renate Chasman, he developed the Chasman-Green lattice, which was later used for storage rings of synchrotron light source A synchrotron light source is a source of electromagnetic radiation (EM) usually produced by a storage ring, for scientific and technical purposes. First observed in synchrotrons, synchrotron light is now produced by storage rings and othe ...s. Referen ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Brookhaven National Laboratory
Brookhaven National Laboratory (BNL) is a United States Department of Energy national laboratories, United States Department of Energy national laboratory located in Upton, New York, a hamlet of the Brookhaven, New York, Town of Brookhaven. It was formally established in 1947 at the site of Camp Upton, a former List of United States Army installations, U.S. Army base on Long Island. Located approximately 60 miles east of New York City, it is managed by Stony Brook University and Battelle Memorial Institute. Research at BNL includes nuclear and high energy physics, energy science and technology, environmental and bioscience, nanoscience, and national security. The 5,300 acre campus contains several large research facilities, including the Relativistic Heavy Ion Collider and National Synchrotron Light Source II. Seven Nobel Prizes have been awarded for work conducted at Brookhaven Lab. Overview BNL operations are overseen by a Department of Energy Site office, is staffed by approx ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Synchrotron
A synchrotron is a particular type of cyclic particle accelerator, descended from the cyclotron, in which the accelerating particle beam travels around a fixed closed-loop path. The strength of the magnetic field which bends the particle beam into its closed path increases with time during the accelerating process, being ''synchronized'' to the increasing kinetic energy of the particles. The synchrotron is one of the first accelerator concepts to enable the construction of large-scale facilities, since bending, beam focusing and acceleration can be separated into different components. The most powerful modern particle accelerators use versions of the synchrotron design. The largest synchrotron-type accelerator, also the largest particle accelerator in the world, is the Large Hadron Collider (LHC) near Geneva, Switzerland, completed in 2008 by the European Organization for Nuclear Research (CERN). It can accelerate beams of protons to an energy of 7 electron volt, teraelectro ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Storage Ring
A storage ring is a type of circular particle accelerator in which a continuous or pulsed particle beam may be kept circulating, typically for many hours. Storage of a particular particle depends upon the mass, momentum, and usually the charge of the particle to be stored. Storage rings most commonly store electrons, positrons, or protons. Storage rings are most often used to store electrons that radiate synchrotron radiation. Over 50 facilities based on electron storage rings exist and are used for a variety of studies in chemistry and biology. Storage rings can also be used to produce polarized high-energy electron beams through the Sokolov-Ternov effect. The best-known application of storage rings is their use in particle accelerators and in particle colliders, where two counter-rotating beams of stored particles are brought into collision at discrete locations. The resulting subatomic interactions are then studied in a surrounding particle detector. Examples of such faci ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Synchrotron Light Source
A synchrotron light source is a source of electromagnetic radiation (EM) usually produced by a storage ring, for scientific and technical purposes. First observed in synchrotrons, synchrotron light is now produced by storage rings and other specialized particle accelerators, typically accelerating electrons. Once the high-energy electron beam has been generated, it is directed into auxiliary components such as bending magnets and insertion devices ( undulators or wigglers) in storage rings and free electron lasers. These supply the strong magnetic fields perpendicular to the beam that are needed to stimulate the high energy electrons to emit photons. The major applications of synchrotron light are in condensed matter physics, materials science, biology and medicine. A large fraction of experiments using synchrotron light involve probing the structure of matter from the sub- nanometer level of electronic structure to the micrometer and millimeter levels important in m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Transactions On Nuclear Science
The Institute of Electrical and Electronics Engineers (IEEE) is an American 501(c)(3) public charity professional organization for electrical engineering, electronics engineering, and other related disciplines. The IEEE has a corporate office in New York City and an operations center in Piscataway, New Jersey. The IEEE was formed in 1963 as an amalgamation of the American Institute of Electrical Engineers and the Institute of Radio Engineers. History The IEEE traces its founding to 1884 and the American Institute of Electrical Engineers. In 1912, the rival Institute of Radio Engineers was formed. Although the AIEE was initially larger, the IRE attracted more students and was larger by the mid-1950s. The AIEE and IRE merged in 1963. The IEEE is headquartered in New York City, but most business is done at the IEEE Operations Center in Piscataway, New Jersey, opened in 1975. The Australian Section of the IEEE existed between 1972 and 1985, after which it split into state- and te ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Charged Particle Beam
A charged particle beam is a spatially localized group of electrically charged particles that have approximately the same position, kinetic energy (resulting in the same velocity), and direction. The kinetic energies of the particles are much larger than the energies of particles at ambient temperature. The high energy and directionality of charged particle beams make them useful for many applications in particle physics (see Particle beam#Applications and Electron-beam technology). Such beams can be split into two main classes: # ''unbunched beams'' (''coasting beams'' or ''DC beams''), which have no longitudinal substructure in the direction of beam motion. # ''bunched beams'', in which the particles are distributed into pulses (bunches) of particles. Bunched beams are most common in modern facilities, since the most modern particle accelerators require bunched beams for acceleration. Assuming a normal distribution of particle positions and impulses, a charged particle bea ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Beam Emittance
In accelerator physics, emittance is a property of a charged particle beam. It refers to the area occupied by the beam in a position-and-momentum phase space. Each particle in a beam can be described by its position and momentum along each of three orthogonal axes, for a total of six position and momentum coordinates. When the position and momentum for a single axis are plotted on a two dimensional graph, the average spread of the coordinates on this plot is the emittance for that axis. As such, a beam will have three emittances, one along each axis, which can be described independently. As particle momentum along an axis is usually described as an angle relative to that axis, an area on a position-momentum plot will typically have dimensions of length × angle (for example, millimeters × milliradian). Emittance is important for analysis of particle beams. As long as the beam is only subjected to conservative forces, Liouville's theorem shows that emittance is a c ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Synchrotron Radiation
Synchrotron radiation (also known as magnetobremsstrahlung) is the electromagnetic radiation emitted when relativistic charged particles are subject to an acceleration perpendicular to their velocity (). It is produced artificially in some types of particle accelerators or naturally by fast electrons moving through magnetic fields. The radiation produced in this way has a characteristic polarization, and the frequencies generated can range over a large portion of the electromagnetic spectrum. Synchrotron radiation is similar to bremsstrahlung radiation, which is emitted by a charged particle when the acceleration is parallel to the direction of motion. The general term for radiation emitted by particles in a magnetic field is ''gyromagnetic radiation'', for which synchrotron radiation is the ultra-relativistic special case. Radiation emitted by charged particles moving non-relativistically in a magnetic field is called cyclotron emission. For particles in the mildly relativ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Quadrupole Magnet
Quadrupole magnets, abbreviated as Q-magnets, consist of groups of four magnets laid out so that in the planar multipole expansion of the field, the dipole terms cancel and where the lowest significant terms in the field equations are quadrupole. Quadrupole magnets are useful as they create a magnetic field whose magnitude grows rapidly with the radial distance from its longitudinal axis. This is used in particle beam focusing. The simplest magnetic quadrupole is two identical bar magnets parallel to each other such that the north pole of one is next to the south of the other and vice versa. Such a configuration will have no dipole moment, and its field will decrease at large distances faster than that of a dipole. A stronger version with very little external field involves using a ''k''=3 Halbach cylinder. In some designs of quadrupoles using electromagnets, there are four steel pole tips: two opposing magnetic north poles and two opposing magnetic south poles. The steel is m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]