Cha 1107−7626
   HOME





Cha 1107−7626
Cha 1107−7626 (Cha J11070768−7626326) is a free-floating planetary-mass object in the Chamaeleon I star-forming region, about distant from the Solar System. It is the lowest-mass object with hydrocarbons detected in its disk (as of May 2025). The object is located north-west of IC 2631. Cha 1107−7626 was discovered in 2008 by Kevin Luhman et al. with the Spitzer Space Telescope and the Magellan II telescope. The researchers estimated a spectral type of L0, due to it having weaker TiO and VO absorption compared compared to other low-mass members of the Chamaeleon I region, such as OTS 44 and Cha 110913−773444. Initially the mass was estimated to be 0.004-0.01 (4.2-10.5 ). A work by Laura Flagg et al. (2025) observed the object with the JWST instruments NIRSpec and MIRI. This work refined the mass of Cha 1107−7626 to 6-10 . It also detected hydrocarbons in the disk of this planetary-mass object. The circumstellar disk The Spitzer photometry showed an ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Cha 110913−773444
Cha 110913−773444 (sometimes abbreviated ''Cha 110913'') is an astronomical object surrounded by what appears to be a protoplanetary disk. It lies at a distance of 529 light-years from Earth. There is no consensus yet among astronomers whether to classify the object as a sub-brown dwarf (with planets) or a rogue planet (with moons). Cha 110913−773444 was discovered in 2004 by Kevin Luhman and others at Pennsylvania State University using the Spitzer Space Telescope and the Hubble Space Telescope, as well as two Earth-bound telescopes in Chile. See also * WISEA J120037.79-784508.3, a brown dwarf with a primordial disk * OTS 44, a rogue planet * SCR 1845-6357, a binary system with a faint red dwarf and a brown dwarf * PSO J318.5−22, a rogue planet * 2MASS J11151597+1937266, a relative nearby planetary-mass object with a disk * KPNO-Tau 12 KPNO-Tau 12 (also called 2MASS J0419012+280248) is a low-mass brown dwarf or free-floating planetary-mass object ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hydrogen Spectral Series
The emission spectrum of atomic hydrogen has been divided into a number of ''spectral series'', with wavelengths given by the Rydberg formula. These observed spectral lines are due to the electron making transitions between two energy levels in an atom. The classification of the series by the Rydberg formula was important in the development of quantum mechanics. The spectral series are important in astronomical spectroscopy for detecting the presence of hydrogen and calculating red shifts. Physics A hydrogen atom consists of an electron orbiting its nucleus. The electromagnetic force between the electron and the nuclear proton leads to a set of quantum states for the electron, each with its own energy. These states were visualized by the Bohr model of the hydrogen atom as being distinct orbits around the nucleus. Each energy level, or electron shell, or orbit, is designated by an integer, as shown in the figure. The Bohr model was later replaced by quantum mechanics in whi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Very Large Telescope
The Very Large Telescope (VLT) is an astronomical facility operated since 1998 by the European Southern Observatory, located on Cerro Paranal in the Atacama Desert of northern Chile. It consists of four individual telescopes, each equipped with a primary mirror that measures in diameter. These optical telescopes, named ''Antu'', ''Kueyen'', ''Melipal'', and ''Yepun'' (all words for astronomical objects in the Mapuche language), are generally used separately but can be combined to achieve a very high angular resolution. The VLT array is also complemented by four movable Auxiliary Telescopes (ATs) with apertures. The VLT is capable of observing both visible and infrared wavelengths. Each individual telescope can detect objects that are roughly four billion times fainter than what can be seen with the naked eye. When all the telescopes are combined, the facility can achieve an angular resolution of approximately 0.002 arcsecond. In single telescope mode, the angular resol ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hydrogen
Hydrogen is a chemical element; it has chemical symbol, symbol H and atomic number 1. It is the lightest and abundance of the chemical elements, most abundant chemical element in the universe, constituting about 75% of all baryon, normal matter. Under standard conditions, hydrogen is a gas of diatomic molecules with the chemical formula, formula , called dihydrogen, or sometimes hydrogen gas, molecular hydrogen, or simply hydrogen. Dihydrogen is colorless, odorless, non-toxic, and highly combustible. Stars, including the Sun, mainly consist of hydrogen in a plasma state, while on Earth, hydrogen is found as the gas (dihydrogen) and in molecular forms, such as in water and organic compounds. The most common isotope of hydrogen (H) consists of one proton, one electron, and no neutrons. Hydrogen gas was first produced artificially in the 17th century by the reaction of acids with metals. Henry Cavendish, in 1766–1781, identified hydrogen gas as a distinct substance and discovere ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Accretion (astrophysics)
In astrophysics, accretion is the accumulation of particles into a massive object by gravity, gravitationally attracting more matter, typically gaseous matter, into an accretion disk. Most astronomical objects, such as galaxy, galaxies, stars, and planets, are formed by accretion processes. Overview The accretion model that Earth and the other terrestrial planets formed from meteoric material was proposed in 1944 by Otto Schmidt, followed by the ''protoplanet theory'' of William McCrea (astronomer), William McCrea (1960) and finally the ''capture theory'' of Michael Woolfson. For details of Kant's position, see In 1978, Andrew Prentice resurrected the initial Laplacian ideas about planet formation and developed the ''modern Laplacian theory''. None of these models proved completely successful, and many of the proposed theories were descriptive. The 1944 accretion model by Otto Schmidt was further developed in a quantitative way in 1969 by Viktor Safronov. He calculated, in deta ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hydrogen-alpha
Hydrogen-alpha, typically shortened to H-alpha or Hα, is a deep-red visible spectral line of the hydrogen atom with a wavelength of 656.28  nm in air and 656.46 nm in vacuum. It is the first spectral line in the Balmer series and is emitted when an electron falls from a hydrogen atom's third- to second-lowest energy level. H-alpha has applications in astronomy where its emission can be observed from emission nebulae and from features in the Sun's atmosphere, including solar prominences and the chromosphere. Balmer series According to the Bohr model of the atom, electrons exist in quantized energy levels surrounding the atom's nucleus. These energy levels are described by the principal quantum number ''n'' = 1, 2, 3, ... . Electrons may only exist in these states, and may only transit between these states. The set of transitions from ''n'' ≥ 3 to ''n'' = 2 is called the Balmer series and its members are named sequentially by Greek letters: *''n'' = 3 to ''n'' = 2 is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Spectroscopy
Spectroscopy is the field of study that measures and interprets electromagnetic spectra. In narrower contexts, spectroscopy is the precise study of color as generalized from visible light to all bands of the electromagnetic spectrum. Spectroscopy, primarily in the electromagnetic spectrum, is a fundamental exploratory tool in the fields of astronomy, chemistry, materials science, and physics, allowing the composition, physical structure and electronic structure of matter to be investigated at the atomic, molecular and macro scale, and over astronomical distances. Historically, spectroscopy originated as the study of the wavelength dependence of the absorption by gas phase matter of visible light dispersed by a prism. Current applications of spectroscopy include biomedical spectroscopy in the areas of tissue analysis and medical imaging. Matter waves and acoustic waves can also be considered forms of radiative energy, and recently gravitational waves have been associa ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Circumplanetary Disk
A circumplanetary disk (or circumplanetary disc, short CPD) is a torus, pancake or ring-shaped accumulation of matter composed of gas, dust, planetesimals, asteroids or collision fragments in orbit around a planet. They are reservoirs of material out of which moons (or exomoons or subsatellites) may form. Such a disk can manifest itself in various ways. In August 2018, astronomers reported the probable detection of a circumplanetary disk around CS Cha B. The authors state that "The CS Cha system is the only system in which a circumplanetary disc is likely present as well as a resolved circumstellar disc." In 2020 though, the parameters of CS Cha B were revised, making it an accreting red dwarf star, and making the disk circumstellar. Theory A giant planet will mainly form via core accretion. In this scenario a core forms via the accretion of small solids. Once the core is massive enough it might carve a gap onto the circumstellar disk around the host star. Material w ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Infrared Excess
An infrared excess is a measurement of an astronomical source, typically a star, that in their spectral energy distribution has a greater measured infrared flux than expected by assuming the star is a blackbody radiator. Infrared excesses are often the result of circumstellar dust heated by starlight and reemitted at longer wavelengths. They are common in young stellar objects and evolved stars on the asymptotic giant branch or older. In addition, monitoring for infrared excess emission from stellar systems is one possible method that could enable a search for large-scale stellar engineering projects of a hypothetical extraterrestrial civilization; for example a Dyson sphere A Dyson sphere is a hypothetical megastructure that encompasses a star and captures a large percentage of its power output. The concept is a thought experiment that attempts to imagine how a spacefaring civilization would meet its energy re ... or Dyson swarm. This infrared excess would be the o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mass
Mass is an Intrinsic and extrinsic properties, intrinsic property of a physical body, body. It was traditionally believed to be related to the physical quantity, quantity of matter in a body, until the discovery of the atom and particle physics. It was found that different atoms and different elementary particle, elementary particles, theoretically with the same amount of matter, have nonetheless different masses. Mass in modern physics has multiple Mass in special relativity, definitions which are conceptually distinct, but physically equivalent. Mass can be experimentally defined as a measure (mathematics), measure of the body's inertia, meaning the resistance to acceleration (change of velocity) when a net force is applied. The object's mass also determines the Force, strength of its gravitational attraction to other bodies. The SI base unit of mass is the kilogram (kg). In physics, mass is Mass versus weight, not the same as weight, even though mass is often determined by ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mid-Infrared Instrument
MIRI, or the Mid-Infrared Instrument, is an instrument on the James Webb Space Telescope. MIRI is a camera and a spectrograph that observes mid infrared, mid to long infrared radiation from 5 to 28 microns. It also has coronagraphs, especially for observing exoplanets. Whereas most of the other instruments on Webb can see from the start of near infrared, or even as short as orange visible light, MIRI can see longer wavelength light. MIRI uses silicon arrays doped with arsenic to make observations at these wavelengths. The imager is designed for wide views but the spectrograph has a smaller view. Because it views the longer wavelengths it needs to be cooler than the other instruments (see Infrared astronomy), and it has an additional cooling system. The cooling system for MIRI includes a Pulse tube refrigerator, pulse tube precooler and a Joule–Thomson effect, Joule-Thomson loop heat exchanger. This allowed MIRI to be cooled down to a temperature of 7 kelvins during operations ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]