HOME





Cauchy Matrix
In mathematics, a Cauchy matrix, named after Augustin-Louis Cauchy, is an ''m''×''n'' matrix with elements ''a''''ij'' in the form : a_=;\quad x_i-y_j\neq 0,\quad 1 \le i \le m,\quad 1 \le j \le n where x_i and y_j are elements of a field \mathcal, and (x_i) and (y_j) are injective sequences (they contain ''distinct'' elements). Properties Every submatrix of a Cauchy matrix is itself a Cauchy matrix. The Hilbert matrix is a special case of the Cauchy matrix, where :x_i-y_j = i+j-1. \; Cauchy determinants The determinant of a Cauchy matrix is clearly a rational fraction in the parameters (x_i) and (y_j). If the sequences were not injective, the determinant would vanish, and tends to infinity if some x_i tends to y_j. A subset of its zeros and poles are thus known. The fact is that there are no more zeros and poles: The determinant of a square Cauchy matrix A is known as a Cauchy determinant and can be given explicitly as : \det \mathbf= (Schechter 1959, eqn 4; Cauchy 1 ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Displacement Rank
Displacement may refer to: Physical sciences Mathematics and physics *Displacement (geometry), is the difference between the final and initial position of a point trajectory (for instance, the center of mass of a moving object). The actual path covered to reach the final position is irrelevant. **Particle displacement, a measurement of distance of the movement of a particle in a medium as it transmits a wave (represented in mathematics by the lower-case Greek letter ξ) **Displacement field (mechanics), an assignment of displacement vectors for all points in a body that is displaced from one state to another **Electric displacement field, as appears in Maxwell's equations *Wien's displacement law, a relation concerning the spectral distribution of blackbody radiation *Angular displacement, a change in orientation of a rigid body, the amount of rotation about a fixed axis. Engineering *Engine displacement, the total volume of air/fuel mixture an engine can draw in during one compl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Fay's Trisecant Identity
In algebraic geometry, Fay's trisecant identity is an identity between theta functions of Riemann surfaces introduced by . Fay's identity holds for theta functions of Jacobians of curves, but not for theta functions of general abelian varieties In mathematics, particularly in algebraic geometry, complex analysis and algebraic number theory, an abelian variety is a smooth projective algebraic variety that is also an algebraic group, i.e., has a group law that can be defined by regular f .... The name "trisecant identity" refers to the geometric interpretation given by , who used it to show that the Kummer variety of a genus ''g'' Riemann surface, given by the image of the map from the Jacobian to projective space of dimension 2^g-1 induced by theta functions of order 2, has a 4-dimensional space of trisecants. Statement Suppose that *C is a compact Riemann surface *g is the genus of C *\theta is the Riemann theta function of C, a function from \mathbb^g to \mathbb *E is a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Toeplitz Matrix
In linear algebra, a Toeplitz matrix or diagonal-constant matrix, named after Otto Toeplitz, is a matrix in which each descending diagonal from left to right is constant. For instance, the following matrix is a Toeplitz matrix: :\qquad\begin a & b & c & d & e \\ f & a & b & c & d \\ g & f & a & b & c \\ h & g & f & a & b \\ i & h & g & f & a \end. Any n \times n matrix A of the form :A = \begin a_0 & a_ & a_ & \cdots & \cdots & a_ \\ a_1 & a_0 & a_ & \ddots & & \vdots \\ a_2 & a_1 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & a_ & a_ \\ \vdots & & \ddots & a_1 & a_0 & a_ \\ a_ & \cdots & \cdots & a_2 & a_1 & a_0 \end is a Toeplitz matrix. If the i,j element of A is denoted A_ then we have :A_ = A_ = a_. A Toeplitz matrix is not necessarily square. Solving a Toeplitz system A matrix equation of the form :Ax = b is called a Toeplitz system if A is a Toeplitz matrix. If A is an n \times n Toeplitz mat ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

LU Factorization
In numerical analysis and linear algebra, lower–upper (LU) decomposition or factorization factors a matrix as the product of a lower triangular matrix and an upper triangular matrix (see matrix multiplication and matrix decomposition). The product sometimes includes a permutation matrix as well. LU decomposition can be viewed as the matrix form of Gaussian elimination. Computers usually solve square systems of linear equations using LU decomposition, and it is also a key step when inverting a matrix or computing the determinant of a matrix. It is also sometimes referred to as LR decomposition (factors into left and right triangular matrices). The LU decomposition was introduced by the Polish astronomer Tadeusz Banachiewicz in 1938, who first wrote product equation LU=A=h^Tg (The last form in his alternate yet equivalent matrix notation appears as g\times h. ) Definitions Let ''A'' be a square matrix. An LU factorization refers to expression of ''A'' into product of two facto ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Pivot Element
The pivot or pivot element is the element of a matrix, or an array, which is selected first by an algorithm (e.g. Gaussian elimination, simplex algorithm, etc.), to do certain calculations. In the case of matrix algorithms, a pivot entry is usually required to be at least distinct from zero, and often distant from it; in this case finding this element is called pivoting. Pivoting may be followed by an interchange of rows or columns to bring the pivot to a fixed position and allow the algorithm to proceed successfully, and possibly to reduce round-off error. It is often used for verifying row echelon form. Pivoting might be thought of as swapping or sorting rows or columns in a matrix, and thus it can be represented as multiplication by permutation matrices. However, algorithms rarely move the matrix elements because this would cost too much time; instead, they just keep track of the permutations. Overall, pivoting adds more operations to the computational cost of an algorithm. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fast Multipole Method
__NOTOC__ The fast multipole method (FMM) is a numerical technique that was developed to speed up the calculation of long-ranged forces in the ''n''-body problem. It does this by expanding the system Green's function using a multipole expansion, which allows one to group sources that lie close together and treat them as if they are a single source. The FMM has also been applied in accelerating the iterative solver in the method of moments (MOM) as applied to computational electromagnetics problems, and in particular in computational bioelectromagnetism. The FMM was first introduced in this manner by Leslie Greengard and Vladimir Rokhlin Jr. and is based on the multipole expansion of the vector Helmholtz equation. By treating the interactions between far-away basis functions using the FMM, the corresponding matrix elements do not need to be explicitly stored, resulting in a significant reduction in required memory. If the FMM is then applied in a hierarchical manner, it can ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


FLOPS
Floating point operations per second (FLOPS, flops or flop/s) is a measure of computer performance in computing, useful in fields of scientific computations that require floating-point calculations. For such cases, it is a more accurate measure than measuring instructions per second. Floating-point arithmetic Floating-point arithmetic is needed for very large or very small real numbers, or computations that require a large dynamic range. Floating-point representation is similar to scientific notation, except computers use base two (with rare exceptions), rather than base ten. The encoding scheme stores the sign, the exponent (in base two for Cray and VAX, base two or ten for IEEE floating point formats, and base 16 for IBM Floating Point Architecture) and the significand (number after the radix point). While several similar formats are in use, the most common is ANSI/IEEE Std. 754-1985. This standard defines the format for 32-bit numbers called ''single precision'', a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Displacement Structure
Displacement may refer to: Physical sciences Mathematics and physics *Displacement (geometry), is the difference between the final and initial position of a point trajectory (for instance, the center of mass of a moving object). The actual path covered to reach the final position is irrelevant. **Particle displacement, a measurement of distance of the movement of a particle in a medium as it transmits a wave (represented in mathematics by the lower-case Greek letter ξ) **Displacement field (mechanics), an assignment of displacement vectors for all points in a body that is displaced from one state to another **Electric displacement field, as appears in Maxwell's equations *Wien's displacement law, a relation concerning the spectral distribution of blackbody radiation *Angular displacement, a change in orientation of a rigid body, the amount of rotation about a fixed axis. Engineering *Engine displacement, the total volume of air/fuel mixture an engine can draw in during one compl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Lagrange Polynomials
In numerical analysis, the Lagrange interpolating polynomial is the unique polynomial of lowest degree of a polynomial, degree that polynomial interpolation, interpolates a given set of data. Given a data set of graph of a function, coordinate pairs (x_j, y_j) with 0 \leq j \leq k, the x_j are called ''nodes'' and the y_j are called ''values''. The Lagrange polynomial L(x) has degree \leq k and assumes each value at the corresponding node, L(x_j) = y_j. Although named after Joseph-Louis Lagrange, who published it in 1795, the method was first discovered in 1779 by Edward Waring. It is also an easy consequence of a formula published in 1783 by Leonhard Euler. Uses of Lagrange polynomials include the Newton–Cotes formulas, Newton–Cotes method of numerical integration, Shamir's Secret Sharing, Shamir's secret sharing scheme in cryptography, and Reed–Solomon error correction in coding theory. For equispaced nodes, Lagrange interpolation is susceptible to Runge's phenomenon o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Augustin-Louis Cauchy
Baron Augustin-Louis Cauchy ( , , ; ; 21 August 1789 – 23 May 1857) was a French mathematician, engineer, and physicist. He was one of the first to rigorously state and prove the key theorems of calculus (thereby creating real analysis), pioneered the field complex analysis, and the study of permutation groups in abstract algebra. Cauchy also contributed to a number of topics in mathematical physics, notably continuum mechanics. A profound mathematician, Cauchy had a great influence over his contemporaries and successors; Hans Freudenthal stated: : "More concepts and theorems have been named for Cauchy than for any other mathematician (in elasticity alone there are sixteen concepts and theorems named for Cauchy)." Cauchy was a prolific worker; he wrote approximately eight hundred research articles and five complete textbooks on a variety of topics in the fields of mathematics and mathematical physics. Biography Youth and education Cauchy was the son of Lou ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Invertible Matrix
In linear algebra, an invertible matrix (''non-singular'', ''non-degenarate'' or ''regular'') is a square matrix that has an inverse. In other words, if some other matrix is multiplied by the invertible matrix, the result can be multiplied by an inverse to undo the operation. An invertible matrix multiplied by its inverse yields the identity matrix. Invertible matrices are the same size as their inverse. Definition An -by- square matrix is called invertible if there exists an -by- square matrix such that\mathbf = \mathbf = \mathbf_n ,where denotes the -by- identity matrix and the multiplication used is ordinary matrix multiplication. If this is the case, then the matrix is uniquely determined by , and is called the (multiplicative) ''inverse'' of , denoted by . Matrix inversion is the process of finding the matrix which when multiplied by the original matrix gives the identity matrix. Over a field, a square matrix that is ''not'' invertible is called singular or deg ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]