Cartan–Dieudonné Theorem
In mathematics, the Cartan–Dieudonné theorem, named after Élie Cartan and Jean Dieudonné, establishes that every orthogonal transformation in an ''n''-dimension (vector space), dimensional symmetric bilinear space can be described as the function composition, composition of at most ''n'' reflection (mathematics), reflections. The notion of a symmetric bilinear space is a generalization of Euclidean space whose structure is defined by a symmetric bilinear form (which need not be Positive-definite bilinear form, positive definite, so is not necessarily an inner product – for instance, a pseudo-Euclidean space is also a symmetric bilinear space). The orthogonal transformations in the space are those linear map#Endomorphisms and automorphisms, automorphisms which preserve the value of the bilinear form between every pair of vectors; in Euclidean space, this corresponds to preserving distances and angles. These orthogonal transformations form a group (mathematics), group under com ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Rotation (mathematics)
Rotation in mathematics is a concept originating in geometry. Any rotation is a motion of a certain space that preserves at least one point. It can describe, for example, the motion of a rigid body around a fixed point. Rotation can have a sign (as in the sign of an angle): a clockwise rotation is a negative magnitude so a counterclockwise turn has a positive magnitude. A rotation is different from other types of motions: translations, which have no fixed points, and (hyperplane) reflections, each of them having an entire -dimensional flat of fixed points in a - dimensional space. Mathematically, a rotation is a map. All rotations about a fixed point form a group under composition called the rotation group (of a particular space). But in mechanics and, more generally, in physics, this concept is frequently understood as a coordinate transformation (importantly, a transformation of an orthonormal basis), because for any motion of a body there is an inverse transformat ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
American Mathematical Society
The American Mathematical Society (AMS) is an association of professional mathematicians dedicated to the interests of mathematical research and scholarship, and serves the national and international community through its publications, meetings, advocacy and other programs. The society is one of the four parts of the Joint Policy Board for Mathematics and a member of the Conference Board of the Mathematical Sciences. History The AMS was founded in 1888 as the New York Mathematical Society, the brainchild of Thomas Fiske, who was impressed by the London Mathematical Society on a visit to England. John Howard Van Amringe became the first president while Fiske became secretary. The society soon decided to publish a journal, but ran into some resistance over concerns about competing with the '' American Journal of Mathematics''. The result was the ''Bulletin of the American Mathematical Society'', with Fiske as editor-in-chief. The de facto journal, as intended, was influentia ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Graduate Studies In Mathematics
Graduate Studies in Mathematics (GSM) is a series of graduate-level textbooks in mathematics published by the American Mathematical Society (AMS). The books in this series are published ihardcoverane-bookformats. List of books *1 ''The General Topology of Dynamical Systems'', Ethan Akin (1993, ) *2 ''Combinatorial Rigidity'', Jack Graver, Brigitte Servatius, Herman Servatius (1993, ) *3 ''An Introduction to Gröbner Bases'', William W. Adams, Philippe Loustaunau (1994, ) *4 ''The Integrals of Lebesgue, Denjoy, Perron, and Henstock'', Russell A. Gordon (1994, ) *5 ''Algebraic Curves and Riemann Surfaces'', Rick Miranda (1995, ) *6 ''Lectures on Quantum Groups'', Jens Carsten Jantzen (1996, ) *7 ''Algebraic Number Fields'', Gerald J. Janusz (1996, 2nd ed., ) *8 ''Discovering Modern Set Theory. I: The Basics'', Winfried Just, Martin Weese (1996, ) *9 ''An Invitation to Arithmetic Geometry'', Dino Lorenzini (1996, ) *10 ''Representations of Finite and Compact Groups'', Barry Simon ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Cambridge University Press
Cambridge University Press was the university press of the University of Cambridge. Granted a letters patent by King Henry VIII in 1534, it was the oldest university press in the world. Cambridge University Press merged with Cambridge Assessment to form Cambridge University Press and Assessment under Queen Elizabeth II's approval in August 2021. With a global sales presence, publishing hubs, and offices in more than 40 countries, it published over 50,000 titles by authors from over 100 countries. Its publications include more than 420 academic journals, monographs, reference works, school and university textbooks, and English language teaching and learning publications. It also published Bibles, runs a bookshop in Cambridge, sells through Amazon, and has a conference venues business in Cambridge at the Pitt Building and the Sir Geoffrey Cass Sports and Social Centre. It also served as the King's Printer. Cambridge University Press, as part of the University of Cambridge, was a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Springer-Verlag
Springer Science+Business Media, commonly known as Springer, is a German multinational publishing company of books, e-books and peer-reviewed journals in science, humanities, technical and medical (STM) publishing. Originally founded in 1842 in Berlin, it expanded internationally in the 1960s, and through mergers in the 1990s and a sale to venture capitalists it fused with Wolters Kluwer and eventually became part of Springer Nature in 2015. Springer has major offices in Berlin, Heidelberg, Dordrecht, and New York City. History Julius Springer founded Springer-Verlag in Berlin in 1842 and his son Ferdinand Springer grew it from a small firm of 4 employees into Germany's then second-largest academic publisher with 65 staff in 1872.Chronology ". Springer Science+Business Media. In 1964, Springer expanded its business internationally, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Chasles' Theorem (kinematics)
In kinematics, Chasles' theorem, or Mozzi–Chasles' theorem, says that the most general rigid body displacement can be produced by a screw displacement. A direct Euclidean isometry in three dimensions involves a translation and a rotation. The screw displacement representation of the isometry decomposes the translation into two components, one parallel to the axis of the rotation associated with the isometry and the other component perpendicular to that axis. The Chasles theorem states that the axis of rotation can be selected to provide the second component of the original translation as a result of the rotation. This theorem in three dimensions extends a similar representation of planar isometries as rotation. Once the screw axis is selected, the screw displacement rotates about it and a translation parallel to the axis is included in the screw displacement. Planar isometries with complex numbers Euclidean geometry is expressed in the complex plane by points p = x + y i where ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Householder Transformation
In linear algebra, a Householder transformation (also known as a Householder reflection or elementary reflector) is a linear transformation that describes a reflection (mathematics), reflection about a plane (mathematics), plane or hyperplane containing the origin. The Householder transformation was used in a 1958 paper by Alston Scott Householder. Definition Operator and transformation The Householder Operator (mathematics), operator may be defined over any finite-dimensional inner product space V with inner product \langle \cdot, \cdot \rangle and unit vector u\in V as : H_u(x) := x - 2\,\langle x,u \rangle\,u\,. It is also common to choose a non-unit vector q \in V, and normalize it directly in the Householder operator's expression: :H_q \left ( x \right ) = x - 2\, \frac\, q \,. Such an operator is Linear operator, linear and self-adjoint. If V=\mathbb^n, note that the reflection hyperplane can be defined by its ''normal vector'', a unit vector \vec v\in V (a vector wit ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Symmetry (geometry)
In geometry, an object has symmetry if there is an Operation (mathematics), operation or Transformation (function), transformation (such as Translation (geometry), translation, Scaling (geometry), scaling, Rotation (mathematics), rotation or Reflection (mathematics), reflection) that maps the figure/object onto itself (i.e., the object has an Invariant (mathematics), invariance under the transform). Thus, a symmetry can be thought of as an immunity to change. For instance, a circle rotated about its center will have the same shape and size as the original circle, as all points before and after the transform would be indistinguishable. A circle is thus said to be ''symmetric under rotation'' or to have ''rotational symmetry''. If the isometry is the reflection of a plane figure about a line, then the figure is said to have reflectional symmetry or line symmetry; it is also possible for a figure/object to have more than one line of symmetry. The types of symmetries that are possible ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Indefinite Orthogonal Group
In mathematics, the indefinite orthogonal group, is the Lie group of all linear transformations of an ''n''-dimension (vector space), dimensional real number, real vector space that leave invariant a nondegenerate form, nondegenerate, symmetric bilinear form of signature of a quadratic form, signature , where . It is also called the pseudo-orthogonal group or generalized orthogonal group. The dimension of the group is . The indefinite special orthogonal group, is the subgroup of consisting of all elements with determinant 1. Unlike in the definite case, is not connected space, connected – it has 2 connected component (topology), components – and there are two additional finite index of a subgroup, index subgroups, namely the connected and , which has 2 components – see ' for definition and discussion. The signature of the form determines the group up to isomorphism; interchanging ''p'' with ''q'' amounts to replacing the metric by its negative, and so gives the same grou ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Characteristic (algebra)
In mathematics, the characteristic of a ring , often denoted , is defined to be the smallest positive number of copies of the ring's multiplicative identity () that will sum to the additive identity (). If no such number exists, the ring is said to have characteristic zero. That is, is the smallest positive number such that: : \underbrace_ = 0 if such a number exists, and otherwise. Motivation The special definition of the characteristic zero is motivated by the equivalent definitions characterized in the next section, where the characteristic zero is not required to be considered separately. The characteristic may also be taken to be the exponent of the ring's additive group, that is, the smallest positive integer such that: : \underbrace_ = 0 for every element of the ring (again, if exists; otherwise zero). This definition applies in the more general class of rngs (see '); for (unital) rings the two definitions are equivalent due to their distributive law. ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Field (mathematics)
In mathematics, a field is a set (mathematics), set on which addition, subtraction, multiplication, and division (mathematics), division are defined and behave as the corresponding operations on rational number, rational and real numbers. A field is thus a fundamental algebraic structure which is widely used in algebra, number theory, and many other areas of mathematics. The best known fields are the field of rational numbers, the field of real numbers and the field of complex numbers. Many other fields, such as field of rational functions, fields of rational functions, algebraic function fields, algebraic number fields, and p-adic number, ''p''-adic fields are commonly used and studied in mathematics, particularly in number theory and algebraic geometry. Most cryptographic protocols rely on finite fields, i.e., fields with finitely many element (set), elements. The theory of fields proves that angle trisection and squaring the circle cannot be done with a compass and straighte ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |