HOME





CVT16 Instruction Set
The F16C (previously/informally known as CVT16) instruction set is an x86 instruction set architecture extension which provides support for converting between half-precision and standard IEEE single-precision floating-point formats. History The CVT16 instruction set, announced by AMD on May 1, 2009, is an extension to the 128-bit SSE core instructions in the x86 and AMD64 instruction sets. CVT16 is a revision of part of the SSE5 instruction set proposal announced on August 30, 2007, which is supplemented by the XOP and FMA4 instruction sets. This revision makes the binary coding of the proposed new instructions more compatible with Intel's AVX instruction extensions, while the functionality of the instructions is unchanged. In recent documents, the name F16C is formally used in both Intel and AMD x86-64 architecture specifications. Technical information There are variants that convert four floating-point values in an XMM register or 8 floating-point values in a YMM re ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Instruction Set Architecture
In computer science, an instruction set architecture (ISA) is an abstract model that generally defines how software controls the CPU in a computer or a family of computers. A device or program that executes instructions described by that ISA, such as a central processing unit (CPU), is called an ''implementation'' of that ISA. In general, an ISA defines the supported instructions, data types, registers, the hardware support for managing main memory, fundamental features (such as the memory consistency, addressing modes, virtual memory), and the input/output model of implementations of the ISA. An ISA specifies the behavior of machine code running on implementations of that ISA in a fashion that does not depend on the characteristics of that implementation, providing binary compatibility between implementations. This enables multiple implementations of an ISA that differ in characteristics such as performance, physical size, and monetary cost (among other things), but t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Rounding
Rounding or rounding off is the process of adjusting a number to an approximate, more convenient value, often with a shorter or simpler representation. For example, replacing $ with $, the fraction 312/937 with 1/3, or the expression √2 with . Rounding is often done to obtain a value that is easier to report and communicate than the original. Rounding can also be important to avoid false precision, misleadingly precise reporting of a computed number, measurement, or estimate; for example, a quantity that was computed as but is known to be accuracy and precision, accurate only to within a few hundred units is usually better stated as "about ". On the other hand, rounding of exact numbers will introduce some round-off error in the reported result. Rounding is almost unavoidable when reporting many computations – especially when dividing two numbers in integer or fixed-point arithmetic; when computing mathematical functions such as square roots, logarithms, and sines; or whe ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Ivy Bridge (microarchitecture)
Ivy Bridge is the codename for Intel's 22 nm microarchitecture used in the third generation of the Intel Core processors ( Core i7, i5, i3). Ivy Bridge is a die shrink to 22 nm process based on FinFET ("3D") Tri-Gate transistors, from the former generation's 32 nm Sandy Bridge microarchitecture—also known as tick–tock model. The name is also applied more broadly to the Xeon and Core i7 Extreme Ivy Bridge-E series of processors released in 2013. Ivy Bridge processors are backward compatible with the Sandy Bridge platform, but such systems might require a firmware update (vendor specific). In 2011, Intel released the 7-series Panther Point chipsets with integrated USB 3.0 and SATA 3.0 to complement Ivy Bridge. Volume production of Ivy Bridge chips began in the third quarter of 2011. Quad-core and dual-core-mobile models launched on April 29, 2012 and May 31, 2012 respectively. Core i3 desktop processors, as well as the first 22  ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Intel Corporation
Intel Corporation is an American multinational corporation and technology company headquartered in Santa Clara, California, and incorporated in Delaware. Intel designs, manufactures, and sells computer components such as central processing units (CPUs) and related products for business and consumer markets. It is one of the world's largest semiconductor chip manufacturers by revenue, and ranked in the ''Fortune'' 500 list of the largest United States corporations by revenue for nearly a decade, from 2007 to 2016 fiscal years, until it was removed from the ranking in 2018. In 2020, it was reinstated and ranked 45th, being the 7th-largest technology company in the ranking. It was one of the first companies listed on Nasdaq. Intel supplies microprocessors for most manufacturers of computer systems, and is one of the developers of the x86 series of instruction sets found in most personal computers (PCs). It also manufactures chipsets, network interface controllers, fl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Zen (microarchitecture)
Zen is a family of computer processor microarchitectures from AMD, first launched in February 2017 with the first generation of Ryzen CPUs. It is used in Ryzen (desktop and mobile), Ryzen Threadripper (workstation and high-end desktop), and Epyc (server). Zen 5 is the latest iteration of the architecture. Comparison History First generation The first-generation Zen was launched with the Ryzen 1000 series of CPUs (codenamed Summit Ridge) in February 2017. The first Zen-based preview system was demonstrated at E3 2016, and first substantially detailed at an event hosted a block away from the Intel Developer Forum 2016. The first Zen-based CPUs reached the market in early March 2017, and Zen-derived Epyc server processors (codenamed "Naples") launched in June 2017 and Zen-based APUs (codenamed "Raven Ridge") arrived in November 2017. This first iteration of Zen utilized GlobalFoundries' 14 nm manufacturing process. Modified Zen-based processors for the Chinese mar ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Excavator (microarchitecture)
AMD Excavator Family 15h is a microarchitecture developed by AMD to succeed Steamroller Family 15h for use in AMD APU processors and normal CPUs. On October 12, 2011, AMD revealed Excavator to be the code name for the fourth-generation Bulldozer-derived core. The Excavator-based APU for mainstream applications is called ''Carrizo'' and was released in 2015. The ''Carrizo'' APU is designed to be HSA 1.0 compliant. An Excavator-based APU and CPU variant named ''Toronto'' for server and enterprise markets was also produced. Excavator was the final revision of the "Bulldozer" family, with two new microarchitectures replacing Excavator a year later. Excavator was succeeded by the x86-64 Zen architecture in early 2017. Architecture Excavator added hardware support for new instructions such as AVX2, BMI2 and RDRAND. Excavator is designed using High Density (aka "Thin") Libraries normally used for GPUs to reduce electric energy consumption and die size, delivering a 30 percent inc ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Steamroller (microarchitecture)
AMD Steamroller Family 15h is a microarchitecture developed by AMD for AMD APUs, which succeeded Piledriver in the beginning of 2014 as the third-generation Bulldozer-based microarchitecture. Steamroller APUs continue to use two-core modules as their predecessors, while aiming at achieving greater levels of parallelism. Microarchitecture ''Steamroller'' still features two-core modules found in ''Bulldozer'' and ''Piledriver'' designs called clustered multi-thread (CMT), meaning that one module is marketed as a dual-core processor. The focus of ''Steamroller'' is for greater parallelism. Improvements center on independent instruction decoders for each core within a module, 25% more of the maximum width dispatches per thread, better instruction schedulers, improved perceptron branch predictor, larger and smarter caches, up to 30% fewer instruction cache misses, branch misprediction rate reduced by 20%, dynamically resizable L2 cache, micro-operations queue, more internal regi ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Piledriver (microarchitecture)
AMD Piledriver Family 15h is a microarchitecture developed by AMD as the second-generation successor to Bulldozer. It targets desktop, mobile and server markets. It is used for the AMD Accelerated Processing Unit (formerly Fusion), AMD FX, and the Opteron line of processors. The changes over Bulldozer are incremental. Piledriver uses the same "module" design. Its main improvements are to branch prediction and FPU/integer scheduling, along with a switch to hard-edge flip-flops to improve power consumption. This resulted in clock speed gains of 8–10% and a performance increase of around 15% with similar power characteristics. FX-9590 is around 40% faster than Bulldozer-based FX-8150, mostly because of higher clock speed. Products based on Piledriver were first released on 15 May 2012 with the AMD Accelerated Processing Unit (APU), code-named Trinity, series of mobile products. APUs aimed at desktops followed in early October 2012 with Piledriver-based FX-series CPUs released ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Puma (microarchitecture)
The Puma Family 16h is a low-power microarchitecture by AMD for its APUs. It succeeds the Jaguar as a second-generation version, targets the same market, and belongs to the same AMD architecture Family 16h. The ''Beema'' line of processors are aimed at low-power notebooks, and ''Mullins'' are targeting the tablet sector. Design The Puma cores use the same microarchitecture as Jaguar, and inherits the design: * Out-of-order execution and Speculative execution, up to 4 CPU cores * Two-way integer execution * Two-way 128-bit wide floating-point and packed integer execution * Integer hardware divider * Puma does not feature clustered multi-thread (CMT), meaning that there are no "modules" * Puma does not feature Heterogeneous System Architecture or zero-copy * 32 KiB instruction + 32 KiB data L1 cache per core * 1–2 MiB unified L2 cache shared by two or four cores * Integrated single channel memory controller supporting 64bit DDR3L * 3.1 mm2 area per core ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Jaguar (microarchitecture)
The AMD Jaguar Family 16h is a low-power microarchitecture designed by AMD. It is used in APUs succeeding the Bobcat Family microarchitecture in 2013 and being succeeded by AMD's Puma architecture in 2014. It is two-way superscalar and capable of out-of-order execution. It is used in AMD's Semi-Custom Business Unit as a design for custom processors and is used by AMD in four product families: ''Kabini'' aimed at notebooks and mini PCs, ''Temash'' aimed at tablets, ''Kyoto'' aimed at micro-servers, and the ''G-Series'' aimed at embedded applications. Both the PlayStation 4 and the Xbox One use SoCs based on the Jaguar microarchitecture, with more powerful GPUs than AMD sells in its own commercially available Jaguar APUs. Design * 32 KiB instruction + 32 KiB data L1 cache per core, L1 cache includes parity error detection * 16-way, 1–2 MiB unified L2 cache shared by two or four cores, L2 cache is protected from errors by the use of error correcting code * Out- ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Processor Info And Feature Bits
Processor may refer to: Computing Hardware * Processor (computing) ** Central processing unit (CPU), the hardware within a computer that executes a program *** Microprocessor, a central processing unit contained on a single integrated circuit (IC) **** Application-specific instruction set processor (ASIP), a component used in system-on-a-chip design **** Graphics processing unit (GPU), a processor designed for doing dedicated graphics-rendering computations **** Physics processing unit (PPU), a dedicated microprocessor designed to handle the calculations of physics **** Digital signal processor (DSP), a specialized microprocessor designed specifically for digital signal processing ***** Image processor, a specialized DSP used for image processing in digital cameras, mobile phones or other devices **** Neural processing unit (NPU), a class of specialized hardware accelerator or computer system designed to accelerate artificial intelligence and machine learning applications, inclu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

X86-64
x86-64 (also known as x64, x86_64, AMD64, and Intel 64) is a 64-bit extension of the x86 instruction set architecture, instruction set. It was announced in 1999 and first available in the AMD Opteron family in 2003. It introduces two new operating modes: 64-bit mode and compatibility mode, along with a new four-level paging mechanism. In 64-bit mode, x86-64 supports significantly larger amounts of virtual memory and physical memory compared to its 32-bit computing, 32-bit predecessors, allowing programs to utilize more memory for data storage. The architecture expands the number of general-purpose registers from 8 to 16, all fully general-purpose, and extends their width to 64 bits. Floating-point arithmetic is supported through mandatory SSE2 instructions in 64-bit mode. While the older x87 FPU and MMX registers are still available, they are generally superseded by a set of sixteen 128-bit Processor register, vector registers (XMM registers). Each of these vector registers ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]