HOME
*





Bézout Domain
In mathematics, a Bézout domain is a form of a Prüfer domain. It is an integral domain in which the sum of two principal ideals is again a principal ideal. This means that for every pair of elements a Bézout identity holds, and that every finitely generated ideal is principal. Any principal ideal domain (PID) is a Bézout domain, but a Bézout domain need not be a Noetherian ring, so it could have non-finitely generated ideals (which obviously excludes being a PID); if so, it is not a unique factorization domain (UFD), but still is a GCD domain. The theory of Bézout domains retains many of the properties of PIDs, without requiring the Noetherian property. Bézout domains are named after the French mathematician Étienne Bézout. Examples * All PIDs are Bézout domains. * Examples of Bézout domains that are not PIDs include the ring of entire functions (functions holomorphic on the whole complex plane) and the ring of all algebraic integers. In case of entire functions, the ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics with the major subdisciplines of number theory, algebra, geometry, and analysis, respectively. There is no general consensus among mathematicians about a common definition for their academic discipline. Most mathematical activity involves the discovery of properties of abstract objects and the use of pure reason to prove them. These objects consist of either abstractions from nature orin modern mathematicsentities that are stipulated to have certain properties, called axioms. A ''proof'' consists of a succession of applications of deductive rules to already established results. These results include previously proved theorems, axioms, andin case of abstraction from naturesome basic properties that are considered true starting points of t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Field Of Fractions
In abstract algebra, the field of fractions of an integral domain is the smallest field in which it can be embedded. The construction of the field of fractions is modeled on the relationship between the integral domain of integers and the field of rational numbers. Intuitively, it consists of ratios between integral domain elements. The field of fractions of R is sometimes denoted by \operatorname(R) or \operatorname(R), and the construction is sometimes also called the fraction field, field of quotients, or quotient field of R. All four are in common usage, but are not to be confused with the quotient of a ring by an ideal, which is a quite different concept. For a commutative ring which is not an integral domain, the analogous construction is called the localization or ring of quotients. Definition Given an integral domain and letting R^* = R \setminus \, we define an equivalence relation on R \times R^* by letting (n,d) \sim (m,b) whenever nb = md. We denote the equiva ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Valuation Ring
In abstract algebra, a valuation ring is an integral domain ''D'' such that for every element ''x'' of its field of fractions ''F'', at least one of ''x'' or ''x''−1 belongs to ''D''. Given a field ''F'', if ''D'' is a subring of ''F'' such that either ''x'' or ''x''−1 belongs to ''D'' for every nonzero ''x'' in ''F'', then ''D'' is said to be a valuation ring for the field ''F'' or a place of ''F''. Since ''F'' in this case is indeed the field of fractions of ''D'', a valuation ring for a field is a valuation ring. Another way to characterize the valuation rings of a field ''F'' is that valuation rings ''D'' of ''F'' have ''F'' as their field of fractions, and their ideals are totally ordered by inclusion; or equivalently their principal ideals are totally ordered by inclusion. In particular, every valuation ring is a local ring. The valuation rings of a field are the maximal elements of the set of the local subrings in the field partially ordered by dominance or ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Maximal Ideal
In mathematics, more specifically in ring theory, a maximal ideal is an ideal that is maximal (with respect to set inclusion) amongst all ''proper'' ideals. In other words, ''I'' is a maximal ideal of a ring ''R'' if there are no other ideals contained between ''I'' and ''R''. Maximal ideals are important because the quotients of rings by maximal ideals are simple rings, and in the special case of unital commutative rings they are also fields. In noncommutative ring theory, a maximal right ideal is defined analogously as being a maximal element in the poset of proper right ideals, and similarly, a maximal left ideal is defined to be a maximal element of the poset of proper left ideals. Since a one sided maximal ideal ''A'' is not necessarily two-sided, the quotient ''R''/''A'' is not necessarily a ring, but it is a simple module over ''R''. If ''R'' has a unique maximal right ideal, then ''R'' is known as a local ring, and the maximal right ideal is also the unique maxim ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Prime Ideal
In algebra, a prime ideal is a subset of a ring that shares many important properties of a prime number in the ring of integers. The prime ideals for the integers are the sets that contain all the multiples of a given prime number, together with the zero ideal. Primitive ideals are prime, and prime ideals are both primary and semiprime. Prime ideals for commutative rings An ideal of a commutative ring is prime if it has the following two properties: * If and are two elements of such that their product is an element of , then is in or is in , * is not the whole ring . This generalizes the following property of prime numbers, known as Euclid's lemma: if is a prime number and if divides a product of two integers, then divides or divides . We can therefore say :A positive integer is a prime number if and only if n\Z is a prime ideal in \Z. Examples * A simple example: In the ring R=\Z, the subset of even numbers is a prime ideal. * Given an integral do ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Localization Of A Ring
In commutative algebra and algebraic geometry, localization is a formal way to introduce the "denominators" to a given ring or module. That is, it introduces a new ring/module out of an existing ring/module ''R'', so that it consists of fractions \frac, such that the denominator ''s'' belongs to a given subset ''S'' of ''R''. If ''S'' is the set of the non-zero elements of an integral domain, then the localization is the field of fractions: this case generalizes the construction of the field \Q of rational numbers from the ring \Z of integers. The technique has become fundamental, particularly in algebraic geometry, as it provides a natural link to sheaf theory. In fact, the term ''localization'' originated in algebraic geometry: if ''R'' is a ring of functions defined on some geometric object (algebraic variety) ''V'', and one wants to study this variety "locally" near a point ''p'', then one considers the set ''S'' of all functions that are not zero at ''p'' and localizes ''R ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Dedekind Domain
In abstract algebra, a Dedekind domain or Dedekind ring, named after Richard Dedekind, is an integral domain in which every nonzero proper ideal factors into a product of prime ideals. It can be shown that such a factorization is then necessarily unique up to the order of the factors. There are at least three other characterizations of Dedekind domains that are sometimes taken as the definition: see below. A field is a commutative ring in which there are no nontrivial proper ideals, so that any field is a Dedekind domain, however in a rather vacuous way. Some authors add the requirement that a Dedekind domain not be a field. Many more authors state theorems for Dedekind domains with the implicit proviso that they may require trivial modifications for the case of fields. An immediate consequence of the definition is that every principal ideal domain (PID) is a Dedekind domain. In fact a Dedekind domain is a unique factorization domain (UFD) if and only if it is a PID. Th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Hereditary Ring
In mathematics, especially in the area of abstract algebra known as module theory, a ring ''R'' is called hereditary if all submodules of projective modules over ''R'' are again projective. If this is required only for finitely generated submodules, it is called semihereditary. For a noncommutative ring ''R'', the terms left hereditary and left semihereditary and their right hand versions are used to distinguish the property on a single side of the ring. To be left (semi-)hereditary, all (finitely generated) submodules of projective ''left'' ''R''-modules must be projective, and similarly to be right (semi-)hereditary all (finitely generated) submodules of projective ''right'' ''R''-modules must be projective. It is possible for a ring to be left (semi-)hereditary but not right (semi-)hereditary and vice versa. Equivalent definitions * The ring ''R'' is left (semi-)hereditary if and only if all ( finitely generated) left ideals of ''R'' are projective modules. * The ring ''R'' ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Atomic Domain
In mathematics, more specifically ring theory, an atomic domain or factorization domain is an integral domain in which every non-zero non-unit can be written in at least one way as a finite product of irreducible elements. Atomic domains are different from unique factorization domains in that this decomposition of an element into irreducibles need not be unique; stated differently, an irreducible element is not necessarily a prime element. Important examples of atomic domains include the class of all unique factorization domains and all Noetherian domains. More generally, any integral domain satisfying the ascending chain condition on principal ideals (ACCP) is an atomic domain. Although the converse is claimed to hold in Cohn's paper, this is known to be false. The term "atomic" is due to P. M. Cohn, who called an irreducible element of an integral domain an "atom". Motivation In this section, a ring can be viewed as merely an abstract set in which one can perform the operati ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Ascending Chain Condition For Principal Ideals
In abstract algebra, the ascending chain condition can be applied to the posets of principal left, principal right, or principal two-sided ideals of a ring, partially ordered by inclusion. The ascending chain condition on principal ideals (abbreviated to ACCP) is satisfied if there is no infinite strictly ascending chain of principal ideals of the given type (left/right/two-sided) in the ring, or said another way, every ascending chain is eventually constant. The counterpart descending chain condition may also be applied to these posets, however there is currently no need for the terminology "DCCP" since such rings are already called left or right perfect rings. (See '' below.) Noetherian rings (e.g. principal ideal domains) are typical examples, but some important non-Noetherian rings also satisfy (ACCP), notably unique factorization domains and left or right perfect rings. Commutative rings It is well known that a nonzero nonunit in a Noetherian integral domain factors into ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Prime Element
In mathematics, specifically in abstract algebra, a prime element of a commutative ring is an object satisfying certain properties similar to the prime numbers in the integers and to irreducible polynomials. Care should be taken to distinguish prime elements from irreducible elements, a concept which is the same in UFDs but not the same in general. Definition An element of a commutative ring is said to be prime if it is not the zero element or a unit and whenever divides for some and in , then divides or divides . With this definition, Euclid's lemma is the assertion that prime numbers are prime elements in the ring of integers. Equivalently, an element is prime if, and only if, the principal ideal generated by is a nonzero prime ideal. (Note that in an integral domain, the ideal is a prime ideal, but is an exception in the definition of 'prime element'.) Interest in prime elements comes from the fundamental theorem of arithmetic, which asserts that each non ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Irreducible Element
In algebra, an irreducible element of a domain is a non-zero element that is not invertible (that is, is not a unit), and is not the product of two non-invertible elements. Relationship with prime elements Irreducible elements should not be confused with prime elements. (A non-zero non-unit element a in a commutative ring R is called prime if, whenever a \mid bc for some b and c in R, then a \mid b or a \mid c.) In an integral domain, every prime element is irreducible,Sharpe (1987) p.54 but the converse is not true in general. The converse is true for unique factorization domains (or, more generally, GCD domains). Moreover, while an ideal generated by a prime element is a prime ideal, it is not true in general that an ideal generated by an irreducible element is an irreducible ideal. However, if D is a GCD domain and x is an irreducible element of D, then as noted above x is prime, and so the ideal generated by x is a prime (hence irreducible) ideal of D. Example In the quad ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]