Bayes Factor
The Bayes factor is a ratio of two competing statistical models represented by their evidence, and is used to quantify the support for one model over the other. The models in question can have a common set of parameters, such as a null hypothesis and an alternative, but this is not necessary; for instance, it could also be a non-linear model compared to its linear approximation. The Bayes factor can be thought of as a Bayesian analog to the likelihood-ratio test, although it uses the integrated (i.e., marginal) likelihood rather than the maximized likelihood. As such, both quantities only coincide under simple hypotheses (e.g., two specific parameter values). Also, in contrast with null hypothesis significance testing, Bayes factors support evaluation of evidence ''in favor'' of a null hypothesis, rather than only allowing the null to be rejected or not rejected. Although conceptually simple, the computation of the Bayes factor can be challenging depending on the complexity of ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Statistical Model
A statistical model is a mathematical model that embodies a set of statistical assumptions concerning the generation of Sample (statistics), sample data (and similar data from a larger Statistical population, population). A statistical model represents, often in considerably idealized form, the Data generating process, data-generating process. When referring specifically to probability, probabilities, the corresponding term is probabilistic model. All Statistical hypothesis testing, statistical hypothesis tests and all Estimator, statistical estimators are derived via statistical models. More generally, statistical models are part of the foundation of statistical inference. A statistical model is usually specified as a mathematical relationship between one or more random variables and other non-random variables. As such, a statistical model is "a formal representation of a theory" (Herman J. Adèr, Herman Adèr quoting Kenneth A. Bollen, Kenneth Bollen). Introduction Informally, a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Approximate Bayesian Computation
Approximate Bayesian computation (ABC) constitutes a class of computational methods rooted in Bayesian statistics that can be used to estimate the posterior distributions of model parameters. In all model-based statistical inference, the likelihood function is of central importance, since it expresses the probability of the observed data under a particular statistical model, and thus quantifies the support data lend to particular values of parameters and to choices among different models. For simple models, an analytical formula for the likelihood function can typically be derived. However, for more complex models, an analytical formula might be elusive or the likelihood function might be computationally very costly to evaluate. ABC methods bypass the evaluation of the likelihood function. In this way, ABC methods widen the realm of models for which statistical inference can be considered. ABC methods are mathematically well-founded, but they inevitably make assumptions and app ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Uniform Distribution (continuous)
In probability theory and statistics, the continuous uniform distributions or rectangular distributions are a family of symmetric probability distributions. Such a distribution describes an experiment where there is an arbitrary outcome that lies between certain bounds. The bounds are defined by the parameters, a and b, which are the minimum and maximum values. The interval can either be closed (i.e. ,b/math>) or open (i.e. (a,b)). Therefore, the distribution is often abbreviated U(a,b), where U stands for uniform distribution. The difference between the bounds defines the interval length; all intervals of the same length on the distribution's support are equally probable. It is the maximum entropy probability distribution for a random variable X under no constraint other than that it is contained in the distribution's support. Definitions Probability density function The probability density function of the continuous uniform distribution is f(x) = \begin \dfrac & ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Prior Distribution
A prior probability distribution of an uncertain quantity, simply called the prior, is its assumed probability distribution before some evidence is taken into account. For example, the prior could be the probability distribution representing the relative proportions of voters who will vote for a particular politician in a future election. The unknown quantity may be a parameter of the model or a latent variable rather than an observable variable. In Bayesian statistics, Bayes' rule prescribes how to update the prior with new information to obtain the posterior probability distribution, which is the conditional distribution of the uncertain quantity given new data. Historically, the choice of priors was often constrained to a conjugate family of a given likelihood function, so that it would result in a tractable posterior of the same family. The widespread availability of Markov chain Monte Carlo methods, however, has made this less of a concern. There are many ways to constru ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Random Variable
A random variable (also called random quantity, aleatory variable, or stochastic variable) is a Mathematics, mathematical formalization of a quantity or object which depends on randomness, random events. The term 'random variable' in its mathematical definition refers to neither randomness nor variability but instead is a mathematical function (mathematics), function in which * the Domain of a function, domain is the set of possible Outcome (probability), outcomes in a sample space (e.g. the set \ which are the possible upper sides of a flipped coin heads H or tails T as the result from tossing a coin); and * the Range of a function, range is a measurable space (e.g. corresponding to the domain above, the range might be the set \ if say heads H mapped to -1 and T mapped to 1). Typically, the range of a random variable is a subset of the Real number, real numbers. Informally, randomness typically represents some fundamental element of chance, such as in the roll of a dice, d ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Biometrika
''Biometrika'' is a peer-reviewed scientific journal published by Oxford University Press for the Biometrika Trust. The editor-in-chief is Paul Fearnhead (Lancaster University). The principal focus of this journal is theoretical statistics. It was established in 1901 and originally appeared quarterly. It changed to three issues per year in 1977 but returned to quarterly publication in 1992. History ''Biometrika'' was established in 1901 by Francis Galton, Karl Pearson, and Raphael Weldon to promote the study of biometrics. The history of ''Biometrika'' is covered by Cox (2001). The name of the journal was chosen by Pearson, but Francis Edgeworth insisted that it be spelt with a "k" and not a "c". Since the 1930s, it has been a journal for statistical theory and methodology. Galton's role in the journal was essentially that of a patron and the journal was run by Pearson and Weldon and after Weldon's death in 1906 by Pearson alone until he died in 1936. In the early days, the Ameri ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bayesian Probability
Bayesian probability ( or ) is an interpretation of the concept of probability, in which, instead of frequency or propensity of some phenomenon, probability is interpreted as reasonable expectation representing a state of knowledge or as quantification of a personal belief. The Bayesian interpretation of probability can be seen as an extension of propositional logic that enables reasoning with hypotheses; that is, with propositions whose truth or falsity is unknown. In the Bayesian view, a probability is assigned to a hypothesis, whereas under frequentist inference, a hypothesis is typically tested without being assigned a probability. Bayesian probability belongs to the category of evidential probabilities; to evaluate the probability of a hypothesis, the Bayesian probabilist specifies a prior probability. This, in turn, is then updated to a posterior probability in the light of new, relevant data (evidence). The Bayesian interpretation provides a standard set of procedur ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Just-noticeable Difference
In the branch of experimental psychology focused on sense, sensation, and perception, which is called psychophysics, a just-noticeable difference or JND is the amount something must be changed in order for a difference to be noticeable, detectable at least half the time. This limen is also known as the difference limen, difference threshold, or least perceptible difference. Quantification For many sensory modalities, over a wide range of stimulus magnitudes sufficiently far from the upper and lower limits of perception, the 'JND' is a fixed proportion of the reference sensory level, and so the ratio of the JND/reference is roughly constant (that is the JND is a constant proportion/percentage of the reference level). Measured in physical units, we have: \frac = k, where I\! is the original intensity of the particular stimulation, \Delta I\! is the addition to it required for the change to be perceived (the JND), and ''k'' is a constant. This rule was first discovered by Erns ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Deciban
The hartley (symbol Hart), also called a ban, or a dit (short for "decimal digit"), is a logarithmic unit that measures information or entropy, based on base 10 logarithms and powers of 10. One hartley is the information content of an event if the probability of that event occurring is . It is therefore equal to the information contained in one decimal digit (or dit), assuming ''a priori'' equiprobability of each possible value. It is named after Ralph Hartley. If base 2 logarithms and powers of 2 are used instead, then the unit of information is the shannon or bit, which is the information content of an event if the probability of that event occurring is . Natural logarithms and powers of e define the nat. One ban corresponds to ln(10) nat = log2(10) Sh, or approximately 2.303 nat, or 3.322 bit (3.322 Sh). A deciban is one tenth of a ban (or about 0.332 Sh); the name is formed from ''ban'' by the SI prefix ''deci-''. Though there is no associated SI unit, information e ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hartley (unit)
The hartley (symbol Hart), also called a ban, or a dit (short for "decimal digit"), is a logarithmic unit that measures information or entropy, based on base 10 logarithms and powers of 10. One hartley is the information content of an event if the probability of that event occurring is . It is therefore equal to the information contained in one decimal digit (or dit), assuming ''a priori'' equiprobability of each possible value. It is named after Ralph Hartley. If base 2 logarithms and powers of 2 are used instead, then the unit of information is the shannon or bit, which is the information content of an event if the probability of that event occurring is . Natural logarithms and powers of e define the nat. One ban corresponds to ln(10) nat = log2(10) Sh, or approximately 2.303 nat, or 3.322 bit (3.322 Sh). A deciban is one tenth of a ban (or about 0.332 Sh); the name is formed from ''ban'' by the SI prefix ''deci-''. Though there is no associated SI unit, information ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Harold Jeffreys
Sir Harold Jeffreys, FRS (22 April 1891 – 18 March 1989) was a British geophysicist who made significant contributions to mathematics and statistics. His book, ''Theory of Probability'', which was first published in 1939, played an important role in the revival of the objective Bayesian view of probability. Education Jeffreys was born in Fatfield, County Durham, England, the son of Robert Hal Jeffreys, headmaster of Fatfield Church School, and his wife, Elizabeth Mary Sharpe, a school teacher. He was educated at his father's school and at Rutherford Technical College, then studied at Armstrong College in Newcastle upon Tyne (at that time part of the University of Durham) and with the University of London External Programme.Cook, Alan ev.br>"Jeffreys, Sir Harold (1891–1989)" ''Oxford Dictionary of National Biography'', Oxford University Press, 2004; online edition, September 2004. Retrieved 1 January 2023. Jeffreys subsequently won a scholarship to study the Mathem ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hypothesis Testing
A statistical hypothesis test is a method of statistical inference used to decide whether the data provide sufficient evidence to reject a particular hypothesis. A statistical hypothesis test typically involves a calculation of a test statistic. Then a decision is made, either by comparing the test statistic to a critical value or equivalently by evaluating a ''p''-value computed from the test statistic. Roughly 100 specialized statistical tests are in use and noteworthy. History While hypothesis testing was popularized early in the 20th century, early forms were used in the 1700s. The first use is credited to John Arbuthnot (1710), followed by Pierre-Simon Laplace (1770s), in analyzing the human sex ratio at birth; see . Choice of null hypothesis Paul Meehl has argued that the epistemological importance of the choice of null hypothesis has gone largely unacknowledged. When the null hypothesis is predicted by theory, a more precise experiment will be a more severe test of t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |