HOME





BL (logic)
In mathematical logic, basic fuzzy logic (or shortly BL), the logic of the continuous t-norms, is one of the t-norm fuzzy logics. It belongs to the broader class of substructural logics, or logics of residuated lattices;Ono (2003). it extends the logic MTL of all left-continuous t-norms. Syntax Language The language of the propositional logic BL consists of countably many propositional variables and the following primitive logical connectives: * Implication \rightarrow ( binary) * Strong conjunction \otimes (binary). The sign & is a more traditional notation for strong conjunction in the literature on fuzzy logic, while the notation \otimes follows the tradition of substructural logics. * Bottom \bot (nullary — a propositional constant); 0 or \overline are common alternative signs and zero a common alternative name for the propositional constant (as the constants bottom and zero of substructural logics coincide in MTL). The following are the most common defined logica ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Mathematical Logic
Mathematical logic is the study of Logic#Formal logic, formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory (also known as computability theory). Research in mathematical logic commonly addresses the mathematical properties of formal systems of logic such as their expressive or deductive power. However, it can also include uses of logic to characterize correct mathematical reasoning or to establish foundations of mathematics. Since its inception, mathematical logic has both contributed to and been motivated by the study of foundations of mathematics. This study began in the late 19th century with the development of axiomatic frameworks for geometry, arithmetic, and Mathematical analysis, analysis. In the early 20th century it was shaped by David Hilbert's Hilbert's program, program to prove the consistency of foundational theories. Results of Kurt Gödel, Gerhard Gentzen, and others provided partial resolution to th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Join (mathematics)
In mathematics, specifically order theory, the join of a subset S of a partially ordered set P is the supremum (least upper bound) of S, denoted \bigvee S, and similarly, the meet of S is the infimum (greatest lower bound), denoted \bigwedge S. In general, the join and meet of a subset of a partially ordered set need not exist. Join and meet are Duality (order theory), dual to one another with respect to order inversion. A partially ordered set in which all pairs have a join is a join-semilattice. Dually, a partially ordered set in which all pairs have a meet is a meet-semilattice. A partially ordered set that is both a join-semilattice and a meet-semilattice is a Lattice (order), lattice. A lattice in which every subset, not just every pair, possesses a meet and a join is a complete lattice. It is also possible to define a partial lattice, in which not all pairs have a meet or join but the operations (when defined) satisfy certain axioms. The join/meet of a subset of a Tot ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Soft Computing
Soft computing is an umbrella term used to describe types of algorithms that produce approximate solutions to unsolvable high-level problems in computer science. Typically, traditional hard-computing algorithms heavily rely on concrete data and mathematical models to produce solutions to problems. Soft computing was coined in the late 20th century. During this period, revolutionary research in three fields greatly impacted soft computing. Fuzzy logic is a computational paradigm that entertains the uncertainties in data by using levels of truth rather than rigid 0s and 1s in binary. Next, neural networks which are computational models influenced by human brain functions. Finally, evolutionary computation is a term to describe groups of algorithm that mimic natural processes such as evolution and natural selection. In the context of artificial intelligence and machine learning, soft computing provides tools to handle real-world uncertainties. Its methods supplement preexisting method ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Total Order
In mathematics, a total order or linear order is a partial order in which any two elements are comparable. That is, a total order is a binary relation \leq on some set X, which satisfies the following for all a, b and c in X: # a \leq a ( reflexive). # If a \leq b and b \leq c then a \leq c ( transitive). # If a \leq b and b \leq a then a = b ( antisymmetric). # a \leq b or b \leq a ( strongly connected, formerly called totality). Requirements 1. to 3. just make up the definition of a partial order. Reflexivity (1.) already follows from strong connectedness (4.), but is required explicitly by many authors nevertheless, to indicate the kinship to partial orders. Total orders are sometimes also called simple, connex, or full orders. A set equipped with a total order is a totally ordered set; the terms simply ordered set, linearly ordered set, toset and loset are also used. The term ''chain'' is sometimes defined as a synonym of ''totally ordered set'', but generally refers to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Soundness Theorem
In logic and deductive reasoning, an argument is sound if it is both valid in form and has no false premises. Soundness has a related meaning in mathematical logic, wherein a formal system of logic is sound if and only if every well-formed formula that can be proven in the system is logically valid with respect to the logical semantics of the system. Definition In deductive reasoning, a sound argument is an argument that is valid and all of its premises are true (and as a consequence its conclusion is true as well). An argument is valid if, assuming its premises are true, the conclusion ''must be'' true. An example of a sound argument is the following well-known syllogism: : ''(premises)'' : All men are mortal. : Socrates is a man. : ''(conclusion)'' : Therefore, Socrates is mortal. Because of the logical necessity of the conclusion, this argument is valid; and because the argument is valid and its premises are true, the argument is sound. However, an argument can be vali ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Completeness (logic)
In mathematical logic and metalogic, a formal system is called complete with respect to a particular property if every formula having the property can be derived using that system, i.e. is one of its theorems; otherwise the system is said to be incomplete. The term "complete" is also used without qualification, with differing meanings depending on the context, mostly referring to the property of semantical validity. Intuitively, a system is called complete in this particular sense, if it can derive every formula that is true. Other properties related to completeness The property converse to completeness is called soundness: a system is sound with respect to a property (mostly semantical validity) if each of its theorems has that property. Forms of completeness Expressive completeness A formal language is ''expressively complete'' if it can express the subject matter for which it is intended. Functional completeness A set of logical connectives associated with a formal ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algebraic Structure
In mathematics, an algebraic structure or algebraic system consists of a nonempty set ''A'' (called the underlying set, carrier set or domain), a collection of operations on ''A'' (typically binary operations such as addition and multiplication), and a finite set of identities (known as ''axioms'') that these operations must satisfy. An algebraic structure may be based on other algebraic structures with operations and axioms involving several structures. For instance, a vector space involves a second structure called a field, and an operation called ''scalar multiplication'' between elements of the field (called '' scalars''), and elements of the vector space (called '' vectors''). Abstract algebra is the name that is commonly given to the study of algebraic structures. The general theory of algebraic structures has been formalized in universal algebra. Category theory is another formalization that includes also other mathematical structures and functions between structu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Algebraic Semantics (mathematical Logic)
In mathematical logic, algebraic semantics is a formal semantics based on algebras studied as part of algebraic logic. For example, the modal logic S4 is characterized by the class of topological boolean algebras—that is, boolean algebras with an interior operator. Other modal logics are characterized by various other algebras with operators. The class of boolean algebras characterizes classical propositional logic, and the class of Heyting algebras propositional intuitionistic logic. MV-algebras are the algebraic semantics of Łukasiewicz logic. See also * Algebraic semantics (computer science) * Lindenbaum–Tarski algebra Further reading * (2nd published by ASL in 2009open accessat Project Euclid * * * Good introduction for readers with prior exposure to non-classical logics but without much background in order theory and/or universal algebra Universal algebra (sometimes called general algebra) is the field of mathematics that studies algebraic structures in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Axiom Scheme
In mathematical logic, an axiom schema (plural: axiom schemata or axiom schemas) generalizes the notion of axiom. Formal definition An axiom schema is a well-formed formula, formula in the metalanguage of an axiomatic system, in which one or more schematic variables appear. These variables, which are metalinguistic constructs, stand for any First-order logic#Formation rules, term or first-order logic, subformula of the system, which may or may not be required to satisfy certain conditions. Often, such conditions require that certain variables be free variable, free, or that certain variables not appear in the subformula or term. Examples Two well known instances of axiom schemata are the: * mathematical induction, induction schema that is part of Peano's axioms for the arithmetic of the natural numbers; * axiom schema of replacement that is part of the standard ZFC axiomatization of set theory. Czesław Ryll-Nardzewski proved that Peano arithmetic cannot be finitely axiomatized, a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Modus Ponens
In propositional logic, (; MP), also known as (), implication elimination, or affirming the antecedent, is a deductive argument form and rule of inference. It can be summarized as "''P'' implies ''Q.'' ''P'' is true. Therefore, ''Q'' must also be true." ''Modus ponens'' is a mixed hypothetical syllogism and is closely related to another valid form of argument, '' modus tollens''. Both have apparently similar but invalid forms: affirming the consequent and denying the antecedent. Constructive dilemma is the disjunctive version of ''modus ponens''. The history of ''modus ponens'' goes back to antiquity. The first to explicitly describe the argument form ''modus ponens'' was Theophrastus. It, along with '' modus tollens'', is one of the standard patterns of inference that can be applied to derive chains of conclusions that lead to the desired goal. Explanation The form of a ''modus ponens'' argument is a mixed hypothetical syllogism, with two premises and a con ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Petr Hájek
Petr Hájek (; 6 February 1940 – 26 December 2016) was a Czech scientist in the area of mathematical logic and a professor of mathematics. Born in Prague, he worked at the Institute of Computer Science at the Academy of Sciences of the Czech Republic and as a lecturer at the faculty of mathematics and physics at the Charles University in Prague and at the Faculty of Nuclear Sciences and Physical Engineering of the Czech Technical University in Prague. Academics Petr Hájek studied at the faculty of mathematics and physics of the Charles University in Prague. Influenced by Petr Vopěnka, he specialized in set theory and arithmetic, and later also in logic and artificial intelligence. He contributed to establishing the mathematical fundamentals of fuzzy logic. Following the Velvet Revolution, he was appointed a senior lecturer (1993) and a professor (1997). From 1992 to 2000 he held the position of chairman of the Institute of Computer Science at the Academy of Sciences of the Cze ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Hilbert-style Deduction System
In logic, more specifically proof theory, a Hilbert system, sometimes called Hilbert calculus, Hilbert-style system, Hilbert-style proof system, Hilbert-style deductive system or Hilbert–Ackermann system, is a type of formal proof system attributed to Gottlob FregeMáté & Ruzsa 1997:129 and David Hilbert. These deductive systems are most often studied for first-order logic, but are of interest for other logics as well. It is defined as a deductive system that generates theorems from axioms and inference rules, especially if the only postulated inference rule is modus ponens. Every Hilbert system is an axiomatic system, which is used by many authors as a sole less specific term to declare their Hilbert systems, without mentioning any more specific terms. In this context, "Hilbert systems" are contrasted with natural deduction systems, in which no axioms are used, only inference rules. While all sources that refer to an "axiomatic" logical proof system characterize it simply a ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]