HOME
*



picture info

Active Optics
Active optics is a technology used with reflecting telescopes developed in the 1980s, which actively shapes a telescope's mirrors to prevent deformation due to external influences such as wind, temperature, and mechanical stress. Without active optics, the construction of 8 metre class telescopes is not possible, nor would telescopes with segmented mirrors be feasible. This method is used by, among others, the Nordic Optical Telescope, the New Technology Telescope, the Telescopio Nazionale Galileo and the Keck telescopes, as well as all of the largest telescopes built since the mid-1990s. Active optics is not to be confused with adaptive optics, which operates at a shorter timescale and corrects atmospheric distortions. In astronomy Most modern telescopes are reflectors, with the primary element being a very large mirror. Historically, primary mirrors were quite thick in order to maintain the correct surface figure in spite of forces tending to deform it, like wind and th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




GTC Active Optics Acutators
GTC may refer to: Education * General Teaching Council (other) * Gateway Technical College, in Wisconsin, United States * Green Templeton College, Oxford, a constituent college of the University of Oxford * Greenville Technical College, in South Carolina, United States * Griffin Technical College, now part of Southern Crescent Technical College, in Georgia, United States * Gwinnett Technical College, in Georgia, United States * Government Tolaram College, in Narayanganj, Bangladesh Legal * General Terms & Conditions, also referred to as "General T&Cs" or simply "T&Cs" or "GTCs", are the General "boiler plate" conditions added as an annex to a contractual agreement. GTCs are commonly found in the back of a rental, sales or service contract. * General Terms and Conditions, a translation from the German legal phrase Allgemeine Geschäftsbedingungen Science and medicine * Generalised tonic-clonic seizure * Graceful tree conjecture * Gran Telescopio Canarias, a Span ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Deformable Mirror
Deformable mirrors (DM) are mirrors whose surface can be deformed, in order to achieve wavefront control and correction of optical aberrations. Deformable mirrors are used in combination with wavefront sensors and real-time control systems in adaptive optics. In 2006 they found a new use in femtosecond pulse shaping. The shape of a DM can be controlled with a speed that is appropriate for compensation of dynamic aberrations present in the optical system. In practice the DM shape should be changed much faster than the process to be corrected, as the correction process, even for a static aberration, may take several iterations. A DM usually has many degrees of freedom. Typically, these degrees of freedom are associated with the mechanical actuators and it can be roughly taken that one actuator corresponds to one degree of freedom. Deformable mirror parameters Number of actuators determines the number of degrees of freedom (wavefront inflections) the mirror can correct. It is ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


List Of Telescope Parts And Construction
Hardware Accessories *Finderscope * Iron sight * Reflector (reflex) sight * Cheshire collimator: A simple tool to collimate a telescope Control *Clock drive * GoTo Mechanical construction *Mirror support cell *Serrurier truss *Silvering Mounts * Telescope mount - Types include: ** Altazimuth mount ** Equatorial mount *** Equatorial platform **** Poncet Platform *** Fork mount *** German equatorial mount *** Springfield mount Optics Mirrors and lenses are the critical light-bending components of a telescope. *Objective: The first lens or curved mirror that collects and focuses the incoming light. **Primary lens: The objective of a refracting telescope. **Primary mirror: The objective of a reflecting telescope. *Corrector plate: A full aperture negative lens placed before a primary mirror designed to correct the optical aberrations of the mirror. **Schmidt corrector plate: An aspheric-shaped corrector plate used in the Schmidt telescope. **Meniscus corrector: A meniscus-sh ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Active Surface
An active surface is a surface of a radio telescope that is under active computer control of its shape. Large (more than 10 m in diameter or length) radio telescopes always bend during operation, due to their enormous weight and the fact that even the strongest materials are not perfectly stiff. This bending, in the range of a few millimetres, does not affect low frequency operation much, but dramatically reduces the efficiency of the telescope at higher frequencies where the wavelengths are comparable to the distortion. Typically, the efficiency of a telescope drops appreciably when the deviation from the desired shape is more than 1/10 of the considered wavelength. An active surface uses numerous small actuators to move the surface panels with respect to the underlying frame, and thus maintain the correct shape. An active surface can try to compensate for many different types of errors. The first is gravity—this is simplest since previous measurements, or even a m ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Telescope
A telescope is a device used to observe distant objects by their emission, absorption, or reflection of electromagnetic radiation. Originally meaning only an optical instrument using lenses, curved mirrors, or a combination of both to observe distant objects, the word ''telescope'' now refers to a wide range of instruments capable of detecting different regions of the electromagnetic spectrum, and in some cases other types of detectors. The first known practical telescopes were refracting telescopes with glass lenses and were invented in the Netherlands at the beginning of the 17th century. They were used for both terrestrial applications and astronomy. The reflecting telescope, which uses mirrors to collect and focus light, was invented within a few decades of the first refracting telescope. In the 20th century, many new types of telescopes were invented, including radio telescopes in the 1930s and infrared telescopes in the 1960s. Etymology The word ''telescope'' was ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Adaptive Optics
Adaptive optics (AO) is a technology used to improve the performance of optical systems by reducing the effect of incoming wavefront distortions by deforming a mirror in order to compensate for the distortion. It is used in astronomical telescopes and laser communication systems to remove the effects of atmospheric distortion, in microscopy, optical fabrication and in retinal imaging systems to reduce optical aberrations. Adaptive optics works by measuring the distortions in a wavefront and compensating for them with a device that corrects those errors such as a deformable mirror or a liquid crystal array. Adaptive optics should not be confused with active optics, which works on a longer timescale to correct the primary mirror geometry. Other methods can achieve resolving power exceeding the limit imposed by atmospheric distortion, such as speckle imaging, aperture synthesis, and lucky imaging, or by moving outside the atmosphere with space telescopes, such as the Hubb ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

X-ray
An X-ray, or, much less commonly, X-radiation, is a penetrating form of high-energy electromagnetic radiation. Most X-rays have a wavelength ranging from 10  picometers to 10  nanometers, corresponding to frequencies in the range 30  petahertz to 30  exahertz ( to ) and energies in the range 145  eV to 124 keV. X-ray wavelengths are shorter than those of UV rays and typically longer than those of gamma rays. In many languages, X-radiation is referred to as Röntgen radiation, after the German scientist Wilhelm Conrad Röntgen, who discovered it on November 8, 1895. He named it ''X-radiation'' to signify an unknown type of radiation.Novelline, Robert (1997). ''Squire's Fundamentals of Radiology''. Harvard University Press. 5th edition. . Spellings of ''X-ray(s)'' in English include the variants ''x-ray(s)'', ''xray(s)'', and ''X ray(s)''. The most familiar use of X-rays is checking for fractures (broken bones), but X-rays are also used in other ways. ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Optical Cavity
An optical cavity, resonating cavity or optical resonator is an arrangement of mirrors or other optical elements that forms a cavity resonator for light waves. Optical cavities are a major component of lasers, surrounding the gain medium and providing feedback of the laser light. They are also used in optical parametric oscillators and some interferometers. Light confined in the cavity reflects multiple times, producing modes with certain resonance frequencies. Modes can be decomposed into longitudinal modes that differ only in frequency and transverse modes that have different intensity patterns across the cross-section of the beam. Many types of optical cavity produce standing wave modes. Different resonator types are distinguished by the focal lengths of the two mirrors and the distance between them. Flat mirrors are not often used because of the difficulty of aligning them to the needed precision. The geometry (resonator type) must be chosen so that the beam remains st ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Interference (wave Propagation)
In physics, interference is a phenomenon in which two waves combine by adding their displacement together at every single point in space and time, to form a resultant wave of greater, lower, or the same amplitude. Constructive and destructive interference result from the interaction of waves that are correlated or coherent with each other, either because they come from the same source or because they have the same or nearly the same frequency. Interference effects can be observed with all types of waves, for example, light, radio, acoustic, surface water waves, gravity waves, or matter waves. Etymology The word ''interference'' is derived from the Latin words ''inter'' which means "between" and ''fere'' which means "hit or strike", and was coined by Thomas Young in 1801. Mechanisms The principle of superposition of waves states that when two or more propagating waves of the same type are incident on the same point, the resultant amplitude at that point is equal to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Acousto-optic Modulator
An acousto-optic modulator (AOM), also called a Bragg cell or an acousto-optic deflector (AOD), uses the acousto-optic effect to diffract and shift the frequency of light using sound waves (usually at radio-frequency). They are used in lasers for Q-switching, telecommunications for signal modulation, and in spectroscopy for frequency control. A piezoelectric transducer is attached to a material such as glass. An oscillating electric signal drives the transducer to vibrate, which creates sound waves in the material. These can be thought of as moving periodic planes of expansion and compression that change the index of refraction. Incoming light scatters (see Brillouin scattering) off the resulting periodic index modulation and interference occurs similar to Bragg diffraction. The interaction can be thought of as a three-wave mixing process resulting in Sum-frequency generation or Difference-frequency generation between phonons and photons. Principles of operation A t ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Polarizer
A polarizer or polariser is an optical filter that lets light waves of a specific polarization pass through while blocking light waves of other polarizations. It can filter a beam of light of undefined or mixed polarization into a beam of well-defined polarization, that is polarized light. The common types of polarizers are linear polarizers and circular polarizers. Polarizers are used in many optical techniques and instruments, and polarizing filters find applications in photography and LCD technology. Polarizers can also be made for other types of electromagnetic waves besides visible light, such as radio waves, microwaves, and X-rays. Linear polarizers ''Linear polarizers'' can be divided into two general categories: absorptive polarizers, where the unwanted polarization states are absorbed by the device, and beam-splitting polarizers, where the unpolarized beam is split into two beams with opposite polarization states. Polarizers which maintain the same axes of p ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Faraday Rotator
A Faraday rotator is a polarization rotator based on the Faraday effect, a magneto-optic effect involving transmission of light through a material when a longitudinal static magnetic field is present. The state of polarization (such as the axis of linear polarization or the orientation of elliptical polarization) is rotated as the wave traverses the device, which is explained by a slight difference in the phase velocity between the left and right circular polarizations. Thus it is an example of ''circular birefringence'', as is optical activity, but involves a material only having this property in the presence of a magnetic field. Circular birefringence, involving a difference in propagation between opposite ''circular'' polarizations, is distinct from ''linear birefringence'' (or simply birefringence, when the term is not further specified) which also transforms a wave's polarization but not through a simple rotation. The polarization state is rotated in proportion to the appl ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]