Autonomous Category
In mathematics, an autonomous category is a monoidal category where dual objects exist. Definition A ''left'' (resp. ''right'') ''autonomous category'' is a monoidal category where every object has a left (resp. right) dual. An ''autonomous category'' is a monoidal category where every object has both a left and a right dual. Rigid category is a synonym for autonomous category. In a symmetric monoidal category, the existence of left duals is equivalent to the existence of right duals, categories of this kind are called (symmetric) compact closed categories. In categorial grammars, categories which are both left and right rigid are often called pregroups, and are employed in Lambek calculus, a non-symmetric extension of linear logic Linear logic is a substructural logic proposed by French logician Jean-Yves Girard as a refinement of classical and intuitionistic logic, joining the dualities of the former with many of the constructive properties of the latter. Althoug ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Monoidal Category
In mathematics, a monoidal category (or tensor category) is a category (mathematics), category \mathbf C equipped with a bifunctor :\otimes : \mathbf \times \mathbf \to \mathbf that is associative up to a natural isomorphism, and an Object (category theory), object ''I'' that is both a left identity, left and right identity for ⊗, again up to a natural isomorphism. The associated natural isomorphisms are subject to certain coherence conditions, which ensure that all the relevant diagram (category theory), diagrams commutative diagram, commute. The ordinary tensor product makes vector spaces, abelian groups, module (mathematics), ''R''-modules, or algebra (ring theory), ''R''-algebras into monoidal categories. Monoidal categories can be seen as a generalization of these and other examples. Every (small category, small) monoidal category may also be viewed as a "categorification" of an underlying monoid, namely the monoid whose elements are the isomorphism classes of the category ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Dual Object
In category theory, a branch of mathematics, a dual object is an analogue of a dual vector space from linear algebra for Object (category theory), objects in arbitrary Monoidal category, monoidal categories. It is only a partial generalization, based upon the categorical properties of Duality (mathematics), duality for Dimension (vector space), finite-dimensional vector spaces. An object admitting a dual is called a dualizable object. In this formalism, infinite-dimensional vector spaces are not dualizable, since the dual vector space ''V''∗ doesn't satisfy the axioms. Often, an object is dualizable only when it satisfies some finiteness or Compact space, compactness property. A Category (mathematics), category in which each object has a dual is called autonomous or rigid. The category of finite-dimensional vector spaces with the standard tensor product is rigid, while the category of vector spaces, category of all vector spaces is not. Motivation Let ''V'' be a finite-dimensiona ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Symmetric Monoidal Category
In category theory, a branch of mathematics, a symmetric monoidal category is a monoidal category (i.e. a category in which a "tensor product" \otimes is defined) such that the tensor product is symmetric (i.e. A\otimes B is, in a certain strict sense, naturally isomorphic to B\otimes A for all objects A and B of the category). One of the prototypical examples of a symmetric monoidal category is the category of vector spaces over some fixed field ''k,'' using the ordinary tensor product of vector spaces. Definition A symmetric monoidal category is a monoidal category (''C'', ⊗, ''I'') such that, for every pair ''A'', ''B'' of objects in ''C'', there is an isomorphism s_: A \otimes B \to B \otimes A called the ''swap map'' that is natural in both ''A'' and ''B'' and such that the following diagrams commute: *The unit coherence: *: *The associativity coherence: *: *The inverse law: *: In the diagrams above, ''a'', ''l'', and ''r'' are the associativity isomorphism, the left unit i ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Closed Monoidal Category
In mathematics, especially in category theory, a closed monoidal category (or a ''monoidal closed category'') is a category that is both a monoidal category and a closed category in such a way that the structures are compatible. A classic example is the category of sets, Set, where the monoidal product of sets A and B is the usual cartesian product A \times B, and the internal Hom B^A is the set of functions from A to B. A non- cartesian example is the category of vector spaces, ''K''-Vect, over a field K. Here the monoidal product is the usual tensor product of vector spaces, and the internal Hom is the vector space of linear maps from one vector space to another. The internal language of closed symmetric monoidal categories is linear logic and the type system is the linear type system. Many examples of closed monoidal categories are symmetric. However, this need not always be the case, as non-symmetric monoidal categories can be encountered in category-theoret ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Biclosed Monoidal Category
In mathematics, especially in category theory, a closed monoidal category (or a ''monoidal closed category'') is a category that is both a monoidal category and a closed category in such a way that the structures are compatible. A classic example is the category of sets, Set, where the monoidal product of sets A and B is the usual cartesian product A \times B, and the internal Hom B^A is the set of functions from A to B. A non- cartesian example is the category of vector spaces, ''K''-Vect, over a field K. Here the monoidal product is the usual tensor product of vector spaces, and the internal Hom is the vector space of linear maps from one vector space to another. The internal language of closed symmetric monoidal categories is linear logic and the type system is the linear type system. Many examples of closed monoidal categories are symmetric. However, this need not always be the case, as non-symmetric monoidal categories can be encountered in category-theoretic formulations o ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Dual Object
In category theory, a branch of mathematics, a dual object is an analogue of a dual vector space from linear algebra for Object (category theory), objects in arbitrary Monoidal category, monoidal categories. It is only a partial generalization, based upon the categorical properties of Duality (mathematics), duality for Dimension (vector space), finite-dimensional vector spaces. An object admitting a dual is called a dualizable object. In this formalism, infinite-dimensional vector spaces are not dualizable, since the dual vector space ''V''∗ doesn't satisfy the axioms. Often, an object is dualizable only when it satisfies some finiteness or Compact space, compactness property. A Category (mathematics), category in which each object has a dual is called autonomous or rigid. The category of finite-dimensional vector spaces with the standard tensor product is rigid, while the category of vector spaces, category of all vector spaces is not. Motivation Let ''V'' be a finite-dimensiona ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Rigid Category
In category theory, a branch of mathematics, a rigid category is a monoidal category where every object is rigid, that is, has a dual ''X''* (the internal Hom 'X'', 1 and a morphism 1 → ''X'' ⊗ ''X''* satisfying natural conditions. The category is called right rigid or left rigid according to whether it has right duals or left duals. They were first defined (following Alexander Grothendieck) by Neantro Saavedra Rivano in his thesis on Tannakian categories. Definition There are at least two equivalent definitions of a rigidity. *An object ''X'' of a monoidal category is called left rigid if there is an object ''Y'' and morphisms \eta_X : \mathbf \to X \otimes Y and \epsilon_X : Y \otimes X \to \mathbf such that both compositions X ~ \xrightarrow ~ (X \otimes Y) \otimes X ~ \xrightarrow ~ X \otimes (Y \otimes X) ~ \xrightarrow ~ X Y ~ \xrightarrow ~ Y \otimes (X \otimes Y ) ~ \xrightarrow ~ (Y \otimes X) \otimes Y ~ \xrightarrow ~ Y are identities. A right rigid ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Compact Closed Category
In category theory, a branch of mathematics, compact closed categories are a general context for treating dual objects. The idea of a dual object generalizes the more familiar concept of the dual of a finite-dimensional vector space. So, the motivating example of a compact closed category is FdVect, the category having finite-dimensional vector spaces as objects and linear maps as morphisms, with tensor product as the monoidal structure. Another example is Rel, the category having sets as objects and relations as morphisms, with Cartesian monoidal structure. Symmetric compact closed category A symmetric monoidal category (\mathbf,\otimes,I) is compact closed if every object A \in \mathbf C has a dual object. If this holds, the dual object is unique up to canonical isomorphism, and is denoted A^*. In a bit more detail, an object A^* is called the dual of A if it is equipped with two morphisms called the unit \eta_A:I\to A^*\otimes A and the counit \varepsilon_A:A\oti ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Lambek Calculus
Joachim "Jim" Lambek (5 December 1922 – 23 June 2014) was a Canadian mathematician. He was Peter Redpath Emeritus Professor of Pure Mathematics at McGill University, where he earned his PhD degree in 1950 with Hans Zassenhaus as advisor. Biography Lambek was born in Leipzig, Germany, where he attended a Gymnasium. He came to England in 1938 as a refugee on the ''Kindertransport''. From there he was interned as an enemy alien and deported to a prison work camp in New Brunswick, Canada. There, he began in his spare time a mathematical apprenticeship with Fritz Rothberger, also interned, and wrote the McGill Junior Matriculation in fall of 1941. In the spring of 1942, he was released and settled in Montreal, where he entered studies at McGill University, graduating with an honours mathematics degree in 1945 and an MSc a year later. In 1950, he completed his doctorate under Hans Zassenhaus becoming McGill's first PhD in mathematics. Lambek became assistant professor at Mc ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |