Auto-vectorization
Automatic vectorization, in parallel computing Parallel computing is a type of computing, computation in which many calculations or Process (computing), processes are carried out simultaneously. Large problems can often be divided into smaller ones, which can then be solved at the same time. ..., is a special case of automatic parallelization, where a computer program is converted from a scalar (computing), scalar implementation, which processes a single pair of operands at a time, to a vector (data structure), vector implementation, which processes one operation on multiple pairs of operands at once. For example, modern conventional computers, including specialized supercomputers, typically have vector processing, vector operations that simultaneously perform operations such as the following four additions (via SIMD or SPMD hardware): :\begin c_1 & = a_1 + b_1 \\ c_2 & = a_2 + b_2 \\ c_3 & = a_3 + b_3 \\ c_4 & = a_4 + b_4 \end However, in most programming lan ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Parallel Computing
Parallel computing is a type of computing, computation in which many calculations or Process (computing), processes are carried out simultaneously. Large problems can often be divided into smaller ones, which can then be solved at the same time. There are several different forms of parallel computing: Bit-level parallelism, bit-level, Instruction-level parallelism, instruction-level, Data parallelism, data, and task parallelism. Parallelism has long been employed in high-performance computing, but has gained broader interest due to the physical constraints preventing frequency scaling.S.V. Adve ''et al.'' (November 2008)"Parallel Computing Research at Illinois: The UPCRC Agenda" (PDF). Parallel@Illinois, University of Illinois at Urbana-Champaign. "The main techniques for these performance benefits—increased clock frequency and smarter but increasingly complex architectures—are now hitting the so-called power wall. The computer industry has accepted that future performance inc ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Power ISA
Power ISA is a reduced instruction set computer (RISC) instruction set architecture (ISA) currently developed by the OpenPOWER Foundation, led by IBM. It was originally developed by IBM and the now-defunct Power.org industry group. Power ISA is an evolution of the PowerPC ISA, created by the mergers of the core PowerPC ISA and the optional Book E for embedded applications. The merger of these two components in 2006 was led by Power.org founders IBM and Freescale Semiconductor. Prior to version 3.0, the ISA is divided into several categories. Processors implement a set of these categories as required for their task. Different classes of processors are required to implement certain categories, for example a server-class processor includes the categories: ''Base'', ''Server'', ''Floating-Point'', ''64-Bit'', etc. All processors implement the Base category. Power ISA is a RISC load/store architecture. It has multiple sets of registers: * ''32'' × 32-bit or 64-bit general- ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Carry Bit
Carry or carrying may refer to: People *Carry (name) Carry is an English language, English and German language, German feminine given name, nickname and surname, which serves as an alternate form of Carrie (name), Carrie and a diminutive form of several names including Carola, Carol (given name), Caro ... Finance * Carried interest (or carry), the share of profits in an investment fund paid to the fund manager * Carry (investment), a financial term: the carry of an asset is the gain or cost of holding the asset Firearms * Concealed carry, carrying a firearm or other weapon in public in a concealed manner * Open carry, openly carrying a firearm in public Sports & gaming * Carry, a fault in the game of pickleball * Carry (American football), a statistical term equivalent to a single rushing play * Carry (eSports), a type of role in multiplayer online battle arena games * Carrying (basketball), a rule breach in basketball Other * Carry (arithmetic), when a digit is larger ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Sign Extension
Sign extension (sometimes abbreviated as sext, particularly in mnemonics) is the operation, in computer arithmetic, of increasing the number of bits of a binary number while preserving the number's sign (positive/negative) and value. This is done by appending digits to the most significant side of the number, following a procedure dependent on the particular signed number representation used. For example, if six bits are used to represent the number "00 1010" (decimal positive 10) and the sign extends operation increases the word length to 16 bits, then the new representation is simply "0000 0000 0000 1010". Thus, both the value and the fact that the value was positive are maintained. If ten bits are used to represent the value "11 1111 0001" (decimal negative 15) using two's complement, and this is sign extended to 16 bits, the new representation is "1111 1111 1111 0001". Thus, by padding the left side with ones, the negative sign and the value of the original number are m ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Precision (computer Science)
In computer science, the precision of a numerical quantity is a measure of the detail in which the quantity is expressed. This is usually measured in bits, but sometimes in decimal digits. It is related to precision in mathematics, which describes the number of digits that are used to express a value. Some of the standardized precision formats are: * Half-precision floating-point format * Single-precision floating-point format * Double-precision floating-point format * Quadruple-precision floating-point format * Octuple-precision floating-point format Of these, octuple-precision format is rarely used. The single- and double-precision formats are most widely used and supported on nearly all platforms. The use of half-precision format and minifloat formats has been increasing especially in the field of machine learning since many machine learning algorithms are inherently error-tolerant. Rounding errors Precision is often the source of rounding errors in computation. The num ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Integer (computer Science)
In computer science, an integer is a datum of integral data type, a data type that represents some interval (mathematics), range of mathematical integers. Integral data types may be of different sizes and may or may not be allowed to contain negative values. Integers are commonly represented in a computer as a group of binary digits (bits). The size of the grouping varies so the set of integer sizes available varies between different types of computers. Computer hardware nearly always provides a way to represent a processor word size, register or memory address as an integer. Value and representation The ''value'' of an item with an integral type is the mathematical integer that it corresponds to. Integral types may be ''unsigned'' (capable of representing only non-negative integers) or ''signed'' (capable of representing negative integers as well). An integer value is typically specified in the source code of a program as a sequence of digits optionally prefixed with + or −. S ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Loop Optimization
In compiler theory, loop optimization is the process of increasing execution speed and reducing the overheads associated with loops. It plays an important role in improving cache performance and making effective use of parallel processing capabilities. Most execution time of a scientific program is spent on loops; as such, many compiler optimization techniques have been developed to make them faster. Representation of computation and transformations Since instructions inside loops can be executed repeatedly, it is frequently not possible to give a bound on the number of instruction executions that will be impacted by a loop optimization. This presents challenges when reasoning about the correctness and benefits of a loop optimization, specifically the representations of the computation being optimized and the optimization(s) being performed.In the book Reasoning About Program Transformations', Jean-Francois Collard discusses in depth the general question of representing ex ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Data Dependence
Data ( , ) are a collection of discrete or continuous values that convey information, describing the quantity, quality, fact, statistics, other basic units of meaning, or simply sequences of symbols that may be further interpreted formally. A datum is an individual value in a collection of data. Data are usually organized into structures such as tables that provide additional context and meaning, and may themselves be used as data in larger structures. Data may be used as variables in a computational process. Data may represent abstract ideas or concrete measurements. Data are commonly used in scientific research, economics, and virtually every other form of human organizational activity. Examples of data sets include price indices (such as the consumer price index), unemployment rates, literacy rates, and census data. In this context, data represent the raw facts and figures from which useful information can be extracted. Data are collected using techniques such as m ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Loop Dependence Analysis
In computer science, loop dependence analysis is a process which can be used to find dependencies within iterations of a loop with the goal of determining different relationships between statements. These dependent relationships are tied to the order in which different statements access memory locations. Using the analysis of these relationships, execution of the loop can be organized to allow multiple processors to work on different portions of the loop in parallel. This is known as parallel processing. In general, loops can consume a lot of processing time when executed as serial code. Through parallel processing, it is possible to reduce the total execution time of a program through sharing the processing load among multiple processors. The process of organizing statements to allow multiple processors to work on different portions of a loop is often referred to as parallelization. In order to see how we can exploit parallelization, we have to first analyze the dependencies wi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Pipeline (computing)
In computing, a pipeline, also known as a data pipeline, is a set of data processing elements connected in series, where the output of one element is the input of the next one. The elements of a pipeline are often executed in parallel or in time-sliced fashion. Some amount of buffer storage is often inserted between elements. Concept and motivation Pipelining is a commonly used concept in everyday life. For example, in the assembly line of a car factory, each specific task—such as installing the engine, installing the hood, and installing the wheels—is often done by a separate work station. The stations carry out their tasks in parallel, each on a different car. Once a car has had one task performed, it moves to the next station. Variations in the time needed to complete the tasks can be accommodated by "buffering" (holding one or more cars in a space between the stations) and/or by "stalling" (temporarily halting the upstream stations), until the next station becomes avai ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
RISC-V
RISC-V (pronounced "risk-five") is an open standard instruction set architecture (ISA) based on established reduced instruction set computer (RISC) principles. The project commenced in 2010 at the University of California, Berkeley. It transferred to the RISC-V Foundation in 2015, and from there to RISC-V International, a Swiss non-profit entity, in November 2019. Similar to several other RISC ISAs, e.g. Amber (processor), Amber (ARMv2)(2001), SuperH#J_Core, J-Core(2015), OpenRISC(2000), or OpenSPARC(2005), RISC-V is offered under royalty-free open-source licenses. The documents defining the RISC-V instruction set architecture (ISA) are offered under a Creative Commons license or a BSD licenses, BSD License. Mainline support for RISC-V was added to the Linux 5.17 kernel in 2022, along with its toolchain. In July 2023, RISC-V, in its 64-bit computing, 64-bit variant called riscv64, was included as an official architecture of Linux distribution Debian, in its Debian version histor ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
ARMv8-A SVE
AArch64, also known as ARM64, is a 64-bit computing, 64-bit version of the ARM architecture family, a widely used set of computer processor designs. It was introduced in 2011 with the ARMv8 architecture and later became part of the ARMv9 series. AArch64 allows processors to handle more memory and perform faster calculations than earlier 32-bit computing, 32-bit versions. It is designed to work alongside the older 32-bit mode, known as AArch32, allowing compatibility with a wide range of software. Devices that use AArch64 include smartphones, Tablet computer, tablets, personal computers, and server (computing), servers. The AArch64 architecture has continued to evolve through updates that improve performance, security, and support for advanced computing tasks. AArch64 Execution state In ARMv8-A, ARMv8-R, and ARMv9-A, an "Execution state" defines key characteristics of the processor’s environment. This includes the number of bits used in the primary processor registers, the supp ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |