Austin Model 1
Austin Model 1, or AM1, is a semi-empirical method for the quantum calculation of molecular electronic structure in computational chemistry. It is based on the Neglect of Differential Diatomic Overlap integral approximation. Specifically, it is a generalization of the modified neglect of differential diatomic overlap approximation. Related methods are PM3 and the older MINDO. AM1 was developed by Michael Dewar and co-workers and published in 1985. AM1 is an attempt to improve the MNDO model by reducing the repulsion of atoms at close separation distances. The atomic core-atomic core terms in the MNDO equations were modified through the addition of off-center attractive and repulsive Gaussian functions. The complexity of the parameterization problem increased in AM1 as the number of parameters per atom increased from 7 in MNDO to 13-16 per atom in AM1. The results of AM1 calculations are sometimes used as the starting points for parameterizations of forcefields in molec ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Computational Chemistry
Computational chemistry is a branch of chemistry that uses computer simulations to assist in solving chemical problems. It uses methods of theoretical chemistry incorporated into computer programs to calculate the structures and properties of molecules, groups of molecules, and solids. The importance of this subject stems from the fact that, with the exception of some relatively recent findings related to the hydrogen molecular ion (dihydrogen cation), achieving an accurate quantum mechanical depiction of chemical systems analytically, or in a closed form, is not feasible. The complexity inherent in the many-body problem exacerbates the challenge of providing detailed descriptions of quantum mechanical systems. While computational results normally complement information obtained by chemical experiments, it can occasionally predict unobserved chemical phenomena. Overview Computational chemistry differs from theoretical chemistry, which involves a mathematical description of chem ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Gaussian (software)
Gaussian is a general purpose computational chemistry software package initially released in 1970 by John Pople and his research group at Carnegie Mellon University as Gaussian 70. It has been continuously updated since then. The name originates from Pople's use of Gaussian orbitals to speed up molecular electronic structure calculations as opposed to using Slater-type orbitals, a choice made to improve performance on the limited computing capacities of then-current computer hardware for Hartree–Fock calculations. The current version of the program is Gaussian 16. Originally available through the Quantum Chemistry Program Exchange, it was later licensed out of Carnegie Mellon University, and since 1987 has been developed and licensed by Gaussian, Inc. Standard abilities According to the most recent Gaussian manual, the package can do: *Molecular mechanics **AMBER ** Universal force field (UFF) **DREIDING force field *Semi-empirical quantum chemistry method calculations **Aus ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
VAMP (software)
Vamp most commonly refers to: * Vamp (shoe), the upper part of a shoe * Vamp (woman), a seductress or ''femme fatale''; derived from "vampire" * Vamp (music), a repeating musical figure or accompaniment Vamp or vamps may also refer to: Science and technology * Value Added Information Medical Products (VAMP), former name of the General Practice Research Database * Vesicle-associated membrane protein, a family of proteins * The VAMP regimen, a chemotherapy regimen for the treatment of low-risk childhood Hodgkin lymphoma * Project Vamp, a U.S. Navy hydrologic survey * V.A.M.P. (G.I. Joe), a toy vehicle Vehicles * Venus Atmospheric Maneuverable Platform (VAMP), an inflatable robotic aircraft for Venus * VaMP, the first autonomous car that drove long distances in traffic * "Vamps", short for De Havilland Vampire plane in Rhodesia Music * Vamp (band), Norwegian folk music band formed in 1990 * Vamps (band), Japanese rock band formed in 2008 ** ''Vamps'' (album), the 2009 self ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
AM1*
AM1* is a semiempirical molecular orbital technique in computational chemistry Computational chemistry is a branch of chemistry that uses computer simulations to assist in solving chemical problems. It uses methods of theoretical chemistry incorporated into computer programs to calculate the structures and properties of mol .... The method was developed by Timothy Clark and co-workers (in Computer-Chemie-Centrum, Universität Erlangen-Nürnberg) and published first in 2003. Indeed, AM1* is an extension of AM1 molecular orbital theory and uses AM1 parameters and theory unchanged for the elements H, C, N, O and F. But, other elements have been parameterized using an additional set of d-orbitals in the basis set and with two-center core–core parameters, rather than the Gaussian functions used to modify the core–core potential in AM1. Additionally, for transition metal-hydrogen interactions, a distance dependent term is used to calculate core-core potentials rather than the co ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
SAM1
SAM1, or "Semiempirical ab initio Model 1", is a semiempirical quantum chemistry Quantum chemistry, also called molecular quantum mechanics, is a branch of physical chemistry focused on the application of quantum mechanics to chemical systems, particularly towards the quantum-mechanical calculation of electronic contributions ... method for computing molecular properties. It is an implementation the general Neglect of Differential Diatomic Overlap (NDDO) integral approximation, and is efficient and accurate. Related methods are AM1, PM3 and the older MNDO. SAM1 was developed by M.J.S. Dewar and co-workers at the University of Texas and the University of Florida. Papers describing the implementation of the method and its results were published in 1993 and 1994. The method is implemented in the AMPAC program produced bSemichem SAM1 builds on the success of the Dewar-style semiempirical models by adding two new aspects to the AM1/PM3 formalism: #Two-electron repulsion integ ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Spartan (chemistry Software)
Spartan is a molecular modelling and computational chemistry application from Wavefunction. It contains code for molecular mechanics, semi-empirical methods, ''ab initio'' models, density functional models, post-Hartree–Fock models, thermochemical recipes including G3(MP2) and T1, and machine learning models like corrected MMFF and Est. Density Functional. Quantum chemistry calculations in Spartan are powered by Q-Chem. Primary functions are to supply information about structures, relative stabilities and other properties of isolated molecules. Molecular mechanics calculations on complex molecules are common in the chemical community. Quantum chemical calculations, including Hartree–Fock method molecular orbital calculations, but especially calculations that include electronic correlation, are more time-consuming in comparison. Quantum chemical calculations are also called upon to furnish information about mechanisms and product distributions of chemical reactions, eit ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
GAMESS (UK)
General Atomic and Molecular Electronic Structure System (GAMESS-UK) is a computer software program for computational chemistry. The original code split in 1981 into GAMESS-UK and GAMESS (US) variants, which now differ significantly. Many of the early developments in the UK version arose from the earlier UK based ATMOL program, which, unlike GAMESS, lacked analytical gradients for geometry optimisation. GAMESS-UK can perform many general computational chemistry calculations, including Hartree–Fock method, Møller–Plesset perturbation theory (MP2 & MP3), coupled cluster (CCSD & CCSD(T)), density functional theory (DFT), configuration interaction (CI), and other advanced electronic structure methods. Calculation of valence bond wave functions are possible by the TURTLE code, due to J. H. van Lenthe. See also * CP2K * GAMESS (US) * Gaussian (software) * MOLCAS * MOLPRO * MPQC * NWChem * PSI (computational chemistry) (Psi3) * Firefly (computer program) * Q-Chem * Quantum chemis ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
PC GAMESS
Firefly, formerly named PC GAMESS, is an ab initio computational chemistry program for Intel-compatible x86, x86-64 processors based on GAMESS (US) sources. However, it has been mostly rewritten (60-70% of the code), especially in platform-specific parts (memory allocation, disk input/output, network), mathematic functions (e.g., matrix operations), and quantum chemistry methods (such as Hartree–Fock method, Møller–Plesset perturbation theory, and density functional theory). Thus, it is significantly faster than the original GAMESS. The main maintainer of the program was Alex Granovsky. Since October 2008, the project is no longer associated with GAMESS (US) and the Firefly rename occurred. Until October 17, 2009, both names could be used, but thereafter, the package should be referred to as Firefly exclusively. History On December 4, 2009, the support of any PC GAMESS versions earlier than the first PC GAMESS Firefly version 7.1.C was abandoned, and any and all licenses to ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
GAMESS (US)
General Atomic and Molecular Electronic Structure System (GAMESS (US)) is computer software for computational chemistry. The original code started on October 1, 1977 as a National Resources for Computations in Chemistry project. In 1981, the code base split into GAMESS (US) and GAMESS (UK) variants, which now differ significantly. GAMESS (US) is maintained by the members of the Gordon Research Group at Iowa State University. GAMESS (US) source code is available as source-available freeware, but is not open-source software, due to license restrictions. Abilities GAMESS (US) can perform several general computational chemistry calculations, including Hartree–Fock method, density functional theory (DFT), generalized valence bond (GVB), and multi-configurational self-consistent field (MCSCF). Correlation corrections after these SCF calculations can be estimated by configuration interaction (CI), second order Møller–Plesset perturbation theory (MP2), and coupled cluster (CC) ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
CP2K
CP2K is a freely available ( GPL) quantum chemistry and solid state physics program package, written in Fortran 2008, to perform atomistic simulations of solid state, liquid, molecular, periodic, material, crystal, and biological systems. It provides a general framework for different methods: density functional theory (DFT) using a mixed Gaussian and plane waves approach (GPW) via LDA, GGA, MP2, or RPA levels of theory, classical pair and many-body potentials, semi-empirical ( AM1, PM3, MNDO, MNDOd, PM6) and tight-binding Hamiltonians, as well as Quantum Mechanics/Molecular Mechanics (QM/MM) hybrid schemes relying on the Gaussian Expansion of the Electrostatic Potential (GEEP). The Gaussian and Augmented Plane Waves method (GAPW) as an extension of the GPW method allows for all-electron calculations. CP2K can do simulations of molecular dynamics, metadynamics, Monte Carlo, Ehrenfest dynamics, vibrational analysis, core level spectroscopy, energy minimization, and transition ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
AMPAC
AMPAC is a general-purpose semiempirical quantum chemistry program. It is marketed by Semichem, Inc. and was developed originally by Michael Dewar and his group. The first version of AMPAC (2.1) was made available in 1985 through the Quantum Chemistry Program Exchange (QCPE). Subsequent versions were released through the same source, representing minor updates and optimized versions for other platforms. In 1992, Semichem, Inc. was formed at Professor Dewar's urging to maintain and market the program. ''AMPAC 4.0 with Graphical User Interface'' was released in August of that year. Semichem's current version of AMPAC is 10.http://www.semichem.com/ AMPAC current implements the SAM1, AM1, MNDO, MNDO/d, PM3, MNDOC MINDO/3, RM1 and PM6 semi-empirical methods and AMSOL and COSMO salvation models. See also * Quantum chemistry computer programs Quantum chemistry computer programs are used in computational chemistry to implement the methods of quantum chemistry. Most include the ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Quantum Chemistry
Quantum chemistry, also called molecular quantum mechanics, is a branch of physical chemistry focused on the application of quantum mechanics to chemical systems, particularly towards the quantum-mechanical calculation of electronic contributions to physical and chemical properties of Molecule, molecules, Material, materials, and solutions at the atomic level. These calculations include systematically applied approximations intended to make calculations computationally feasible while still capturing as much information about important contributions to the computed Wave function, wave functions as well as to observable properties such as structures, spectra, and Thermodynamics, thermodynamic properties. Quantum chemistry is also concerned with the computation of quantum effects on molecular dynamics and chemical kinetics. Chemists rely heavily on spectroscopy through which information regarding the Quantization (physics), quantization of energy on a molecular scale can be obtained ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |