HOME





Atom (measure Theory)
In mathematics, more precisely in measure theory, an atom is a measurable set that has positive measure and contains no set of smaller positive measures. A measure that has no atoms is called non-atomic or atomless. Definition Given a measurable space (X, \Sigma) and a measure \mu on that space, a set A\subset X in \Sigma is called an atom if \mu(A) > 0 and for any measurable subset B \subseteq A, either \mu(B) = 0 or \mu(B)=\mu(A). The equivalence class of A is defined by := \, where \Delta is the symmetric difference operator. If A is an atom then all the subsets in /math> are atoms and /math> is called an atomic class. If \mu is a \sigma-finite measure, there are countably many atomic classes. Examples * Consider the set ''X'' = and let the sigma-algebra \Sigma be the power set of ''X''. Define the measure \mu of a set to be its cardinality, that is, the number of elements in the set. Then, each of the singletons , for ''i'' = 1, 2, ..., 9, 10 is an atom. * Consider ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Mathematics
Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many areas of mathematics, which include number theory (the study of numbers), algebra (the study of formulas and related structures), geometry (the study of shapes and spaces that contain them), Mathematical analysis, analysis (the study of continuous changes), and set theory (presently used as a foundation for all mathematics). Mathematics involves the description and manipulation of mathematical object, abstract objects that consist of either abstraction (mathematics), abstractions from nature orin modern mathematicspurely abstract entities that are stipulated to have certain properties, called axioms. Mathematics uses pure reason to proof (mathematics), prove properties of objects, a ''proof'' consisting of a succession of applications of in ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Countable Set
In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function from it into the natural numbers; this means that each element in the set may be associated to a unique natural number, or that the elements of the set can be counted one at a time, although the counting may never finish due to an infinite number of elements. In more technical terms, assuming the axiom of countable choice, a set is ''countable'' if its cardinality (the number of elements of the set) is not greater than that of the natural numbers. A countable set that is not finite is said to be countably infinite. The concept is attributed to Georg Cantor, who proved the existence of uncountable sets, that is, sets that are not countable; for example the set of the real numbers. A note on terminology Although the terms "countable" and "countably infinite" as def ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Dirac Delta Function
In mathematical analysis, the Dirac delta function (or distribution), also known as the unit impulse, is a generalized function on the real numbers, whose value is zero everywhere except at zero, and whose integral over the entire real line is equal to one. Thus it can be Heuristic, represented heuristically as \delta (x) = \begin 0, & x \neq 0 \\ , & x = 0 \end such that \int_^ \delta(x) dx=1. Since there is no function having this property, modelling the delta "function" rigorously involves the use of limit (mathematics), limits or, as is common in mathematics, measure theory and the theory of distribution (mathematics), distributions. The delta function was introduced by physicist Paul Dirac, and has since been applied routinely in physics and engineering to model point masses and instantaneous impulses. It is called the delta function because it is a continuous analogue of the Kronecker delta function, which is usually defined on a discrete domain and takes values ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Atom (order Theory)
In the mathematical field of order theory, an element ''a'' of a partially ordered set with least element 0 is an atom if 0 < ''a'' and there is no ''x'' such that 0 < ''x'' < ''a''. Equivalently, one may define an atom to be an element that is minimal among the non-zero elements, or alternatively an element that covers the least element 0.


Atomic orderings

Let <: denote the covering relation in a partially ordered set. A partially ordered set with a least element 0 is atomic if every element ''b'' > 0 has an atom ''a'' below it, that is, there is some ''a'' such that ''b'' ≥ ''a'' :> ''0''. Every finite partially ordered set with 0 i ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Zorn's Lemma
Zorn's lemma, also known as the Kuratowski–Zorn lemma, is a proposition of set theory. It states that a partially ordered set containing upper bounds for every chain (that is, every totally ordered subset) necessarily contains at least one maximal element. The lemma was proved (assuming the axiom of choice) by Kazimierz Kuratowski in 1922 and independently by Max Zorn in 1935. It occurs in the proofs of several theorems of crucial importance, for instance the Hahn–Banach theorem in functional analysis, the theorem that every vector space has a basis, Tychonoff's theorem in topology stating that every product of compact spaces is compact, and the theorems in abstract algebra that in a ring with identity every proper ideal is contained in a maximal ideal and that every field has an algebraic closure. Zorn's lemma is equivalent to the well-ordering theorem and also to the axiom of choice, in the sense that within ZF ( Zermelo–Fraenkel set theory without th ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Intermediate Value Theorem
In mathematical analysis, the intermediate value theorem states that if f is a continuous function whose domain contains the interval , then it takes on any given value between f(a) and f(b) at some point within the interval. This has two important corollaries: # If a continuous function has values of opposite sign inside an interval, then it has a root in that interval (Bolzano's theorem). # The image of a continuous function over an interval is itself an interval. Motivation This captures an intuitive property of continuous functions over the real numbers: given ''f'' continuous on ,2/math> with the known values f(1) = 3 and f(2) = 5, then the graph of y = f(x) must pass through the horizontal line y = 4 while x moves from 1 to 2. It represents the idea that the graph of a continuous function on a closed interval can be drawn without lifting a pencil from the paper. Theorem The intermediate value theorem states the following: Consider the closed interval I = ,b/math> ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Wacław Sierpiński
Wacław Franciszek Sierpiński (; 14 March 1882 – 21 October 1969) was a Polish mathematician. He was known for contributions to set theory (research on the axiom of choice and the continuum hypothesis), number theory, theory of functions, and topology. He published over 700 papers and 50 books. Three well-known fractals are named after him (the Sierpiński triangle, the Sierpiński carpet, and the Sierpiński curve), as are Sierpiński numbers and the associated Sierpiński problem. Early life and education Sierpiński was born in 1882 in Warsaw, Congress Poland, to a doctor father Konstanty and mother Ludwika (''née'' Łapińska). His abilities in mathematics were evident from childhood. He enrolled in the Department of Mathematics and Physics at the University of Warsaw in 1899 and graduated five years later. In 1903, while still at the University of Warsaw, the Department of Mathematics and Physics offered a prize for the best essay from a student on Vorono ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Continuum (theory)
Continuum (: continua or continuums) theories or models explain variation as involving gradual quantitative transitions without abrupt changes or discontinuities. In contrast, categorical theories or models explain variation using qualitatively different states. In physics In physics, for example, the space-time continuum model describes space and time as part of the same continuum rather than as separate entities. A spectrum in physics, such as the electromagnetic spectrum, is often termed as either continuous (with energy at all wavelengths) or discrete (energy at only certain wavelengths). In contrast, quantum mechanics uses quanta, certain defined amounts (i.e. categorical amounts) which are distinguished from continuous amounts. In mathematics and philosophy A good introduction to the philosophical issues involved is John Lane Bell's essay in the ''Stanford Encyclopedia of Philosophy''. A significant divide is provided by the law of excluded middle. It determ ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Uncountability Of The Real Numbers
In set theory, the cardinality of the continuum is the cardinality or "size" of the set of real numbers \mathbb R, sometimes called the continuum. It is an infinite cardinal number and is denoted by \bold\mathfrak c (lowercase Fraktur "c") or \bold, \bold\mathbb R\bold, . The real numbers \mathbb R are more numerous than the natural numbers \mathbb N. Moreover, \mathbb R has the same number of elements as the power set of \mathbb N. Symbolically, if the cardinality of \mathbb N is denoted as \aleph_0, the cardinality of the continuum is This was proven by Georg Cantor in his uncountability proof of 1874, part of his groundbreaking study of different infinities. The inequality was later stated more simply in his diagonal argument in 1891. Cantor defined cardinality in terms of bijective functions: two sets have the same cardinality if, and only if, there exists a bijective function between them. Between any two real numbers ''a'' < ''b'', no matter how close they are ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Singleton (mathematics)
In mathematics, a singleton (also known as a unit set or one-point set) is a set with exactly one element. For example, the set \ is a singleton whose single element is 0. Properties Within the framework of Zermelo–Fraenkel set theory, the axiom of regularity guarantees that no set is an element of itself. This implies that a singleton is necessarily distinct from the element it contains, thus 1 and \ are not the same thing, and the empty set is distinct from the set containing only the empty set. A set such as \ is a singleton as it contains a single element (which itself is a set, but not a singleton). A set is a singleton if and only if its cardinality is . In von Neumann's set-theoretic construction of the natural numbers, the number 1 is ''defined'' as the singleton \. In axiomatic set theory, the existence of singletons is a consequence of the axiom of pairing: for any set ''A'', the axiom applied to ''A'' and ''A'' asserts the existence of \, which is the same ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  




Counting Measure
In mathematics, specifically measure theory, the counting measure is an intuitive way to put a measure on any set – the "size" of a subset is taken to be the number of elements in the subset if the subset has finitely many elements, and infinity \infty if the subset is infinite. The counting measure can be defined on any measurable space (that is, any set X along with a sigma-algebra) but is mostly used on countable sets. In formal notation, we can turn any set X into a measurable space by taking the power set of X as the sigma-algebra \Sigma; that is, all subsets of X are measurable sets. Then the counting measure \mu on this measurable space (X,\Sigma) is the positive measure \Sigma \to ,+\infty/math> defined by \mu(A) = \begin \vert A \vert & \text A \text\\ +\infty & \text A \text \end for all A\in\Sigma, where \vert A\vert denotes the cardinality of the set A. The counting measure on (X,\Sigma) is σ-finite if and only if the space X is countable In mathematic ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Real Line
A number line is a graphical representation of a straight line that serves as spatial representation of numbers, usually graduated like a ruler with a particular origin (geometry), origin point representing the number zero and evenly spaced marks in either direction representing integers, imagined to extend infinitely. The association between numbers and point (geometry), points on the line links elementary arithmetic, arithmetical operations on numbers to geometry, geometric relations between points, and provides a conceptual framework for learning mathematics. In elementary mathematics, the number line is initially used to teach addition and subtraction of integers, especially involving negative numbers. As students progress, more kinds of numbers can be placed on the line, including fractions, decimal fractions, square roots, and transcendental numbers such as the pi, circle constant : Every point of the number line corresponds to a unique real number, and every real number to ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]