Archimedian Solids 15
Archimedean means of or pertaining to or named in honor of the Greek mathematician Archimedes and may refer to: Mathematics *Archimedean absolute value * Archimedean circle * Archimedean constant * Archimedean copula *Archimedean field *Archimedean group * Archimedean point *Archimedean property *Archimedean solid *Archimedean spiral The Archimedean spiral (also known as Archimedes' spiral, the arithmetic spiral) is a spiral named after the 3rd-century BC Ancient Greece, Greek mathematician Archimedes. The term ''Archimedean spiral'' is sometimes used to refer to the more gene ... * Archimedean tiling Other uses *Archimedean screw * Claw of Archimedes * The Archimedeans, the mathematical society of the University of Cambridge * Archimedean Dynasty * Archimedean Upper Conservatory See also * Archimedes (other) * {{disambiguation ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Archimedes
Archimedes of Syracuse ( ; ) was an Ancient Greece, Ancient Greek Greek mathematics, mathematician, physicist, engineer, astronomer, and Invention, inventor from the ancient city of Syracuse, Sicily, Syracuse in History of Greek and Hellenistic Sicily, Sicily. Although few details of his life are known, based on his surviving work, he is considered one of the leading scientists in classical antiquity, and one of the greatest mathematicians of all time. Archimedes anticipated modern calculus and mathematical analysis, analysis by applying the concept of the Cavalieri's principle, infinitesimals and the method of exhaustion to derive and rigorously prove many geometry, geometrical theorem, theorems, including the area of a circle, the surface area and volume of a sphere, the area of an ellipse, the area under a parabola, the volume of a segment of a paraboloid of revolution, the volume of a segment of a hyperboloid of revolution, and the area of a spiral. Archimedes' other math ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Archimedean Absolute Value
In algebra, an absolute value is a function that generalizes the usual absolute value. More precisely, if is a field or (more generally) an integral domain, an ''absolute value'' on is a function, commonly denoted , x, , from to the real numbers satisfying: It follows from the axioms that , 1, = 1, , -1, = 1, and , -x, =, x, for every . Furthermore, for every positive integer , , n, \le n, where the leftmost denotes the sum of summands equal to the identity element of . The classical absolute value and its square root are examples of absolute values, but not the square of the classical absolute value, which does not fulfill the triangular inequality. An absolute value such that , x+y, \le \max(, x, , , y, ) is an '' ultrametric absolute value.'' An absolute value induces a metric (and thus a topology) by d(f,g) = , f - g, . Examples *The standard absolute value on the integers. *The standard absolute value on the complex numbers. *The ''p''-adic absolute value ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Archimedean Circle
In geometry, an Archimedean circle is any circle constructed from an arbelos that has the same radius as each of Archimedes' twin circles. If the arbelos is normed such that the diameter of its outer (largest) half circle has a length of 1 and ''r'' denotes the radius of any of the inner half circles, then the radius ''ρ'' of such an Archimedean circle is given by :\rho=\fracr\left(1-r\right), There are over fifty different known ways to construct Archimedean circles. Origin An Archimedean circle was first constructed by Archimedes in his '' Book of Lemmas''. In his book, he constructed what is now known as Archimedes' twin circles. Radius If a and b are the radii of the small semicircles of the arbelos, the radius of an Archimedean circle is equal to :R = \frac This radius is thus \frac 1R = \frac 1a + \frac 1b. The Archimedean circle with center C (as in the figure at right) is tangent to the tangents from the centers of the small semicircles to the other small semi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Archimedean Constant
The number (; spelled out as pi) is a mathematical constant, approximately equal to 3.14159, that is the ratio of a circle's circumference to its diameter. It appears in many formulae across mathematics and physics, and some of these formulae are commonly used for defining , to avoid relying on the definition of the length of a curve. The number is an irrational number, meaning that it cannot be expressed exactly as a ratio of two integers, although fractions such as \tfrac are commonly used to approximate it. Consequently, its decimal representation never ends, nor enters a permanently repeating pattern. It is a transcendental number, meaning that it cannot be a solution of an algebraic equation involving only finite sums, products, powers, and integers. The transcendence of implies that it is impossible to solve the ancient challenge of squaring the circle with a compass and straightedge. The decimal digits of appear to be randomly distributed, but no proof of thi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Archimedean Copula
In probability theory and statistics, a copula is a multivariate cumulative distribution function for which the marginal probability distribution of each variable is uniform on the interval , 1 Copulas are used to describe / model the dependence (inter-correlation) between random variables. Their name, introduced by applied mathematician Abe Sklar in 1959, comes from the Latin for "link" or "tie", similar but only metaphoricly related to grammatical copulas in linguistics. Copulas have been used widely in quantitative finance to model and minimize tail risk and portfolio-optimization applications. Sklar's theorem states that any multivariate joint distribution can be written in terms of univariate marginal distribution functions and a copula which describes the dependence structure between the variables. Copulas are popular in high-dimensional statistical applications as they allow one to easily model and estimate the distribution of random vectors by estimatin ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Archimedean Field
In abstract algebra and analysis, the Archimedean property, named after the ancient Greek mathematician Archimedes of Syracuse, is a property held by some algebraic structures, such as ordered or normed groups, and fields. The property, as typically construed, states that given two positive numbers x and y, there is an integer n such that nx > y. It also means that the set of natural numbers is not bounded above. Roughly speaking, it is the property of having no ''infinitely large'' or ''infinitely small'' elements. It was Otto Stolz who gave the axiom of Archimedes its name because it appears as Axiom V of Archimedes’ '' On the Sphere and Cylinder''. The notion arose from the theory of magnitudes of ancient Greece; it still plays an important role in modern mathematics such as David Hilbert's axioms for geometry, and the theories of ordered groups, ordered fields, and local fields. An algebraic structure in which any two non-zero elements are ''comparable'', in the s ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Archimedean Group
In abstract algebra, a branch of mathematics, an Archimedean group is a linearly ordered group for which the Archimedean property holds: every two positive group elements are bounded by integer multiples of each other. The set R of real numbers together with the operation of addition and the usual ordering relation between pairs of numbers is an Archimedean group. By a result of Otto Hölder, every Archimedean group is isomorphic to a subgroup of this group. The name "Archimedean" comes from Otto Stolz, who named the Archimedean property after its appearance in the works of Archimedes. Definition An additive group consists of a set of elements, an associative addition operation that combines pairs of elements and returns a single element, an identity element (or zero element) whose sum with any other element is the other element, and an additive inverse operation such that the sum of any element and its inverse is zero. A group is a linearly ordered group when, in addition, its ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Archimedean Point
An Archimedean point () is a hypothetical viewpoint from which certain objective truths can perfectly be perceived (also known as a God's-eye view) or a reliable starting point from which one may reason. In other words, a view from an Archimedean point describes the ideal of removing oneself from the object of study so that one can see it in relation to all other things while remaining independent of them. For example, the philosopher John Rawls uses the heuristic device of the original position in an attempt to remove the particular biases of individual agents to demonstrate how rational beings might arrive at an objective formulation of justice. Origins The term refers to the great mathematician Archimedes, who supposedly claimed that he could lift the Earth off its foundation if he were given a place to stand, one solid point, and a long enough lever. The idea for the term is attributed to Descartes in his second ''Meditation'', who refers to Archimedes requiring only ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Archimedean Property
In abstract algebra and mathematical analysis, analysis, the Archimedean property, named after the ancient Greek mathematician Archimedes of Syracuse, Italy, Syracuse, is a property held by some algebraic structures, such as ordered or normed group (algebra), groups, and field (mathematics), fields. The property, as typically construed, states that given two positive numbers x and y, there is an integer n such that nx > y. It also means that the set of natural numbers is not bounded above. Roughly speaking, it is the property of having no ''infinitely large'' or ''infinitely small'' elements. It was Otto Stolz who gave the axiom of Archimedes its name because it appears as Axiom V of Archimedes’ ''On the Sphere and Cylinder''. The notion arose from the theory of magnitude (mathematics), magnitudes of ancient Greece; it still plays an important role in modern mathematics such as David Hilbert's Hilbert's axioms, axioms for geometry, and the theories of linearly ordered group, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Archimedean Solid
The Archimedean solids are a set of thirteen convex polyhedra whose faces are regular polygon and are vertex-transitive, although they aren't face-transitive. The solids were named after Archimedes, although he did not claim credit for them. They belong to the class of uniform polyhedra, the polyhedra with regular faces and symmetric vertices. Some Archimedean solids were portrayed in the works of artists and mathematicians during the Renaissance. The elongated square gyrobicupola or ' is an extra polyhedron with regular faces and congruent vertices, but it is not generally counted as an Archimedean solid because it is not vertex-transitive. The solids The Archimedean solids have a single vertex configuration and highly symmetric properties. A vertex configuration indicates which regular polygons meet at each vertex. For instance, the configuration 3 \cdot 5 \cdot 3 \cdot 5 indicates a polyhedron in which each vertex is met by alternating two triangles and two pentagons. Highl ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Archimedean Spiral
The Archimedean spiral (also known as Archimedes' spiral, the arithmetic spiral) is a spiral named after the 3rd-century BC Ancient Greece, Greek mathematician Archimedes. The term ''Archimedean spiral'' is sometimes used to refer to the more general class of spirals of this type (see below), in contrast to ''Archimedes' spiral'' (the specific arithmetic spiral of Archimedes). It is the locus (mathematics), locus corresponding to the locations over time of a point moving away from a fixed point with a constant speed along a line that rotates with constant angular velocity. Equivalently, in Polar coordinate system, polar coordinates it can be described by the equation r = b\cdot\theta with real number . Changing the parameter controls the distance between loops. From the above equation, it can thus be stated: position of the particle from point of start is proportional to angle as time elapses. Archimedes described such a spiral in his book ''On Spirals''. Conon of Samos was a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Archimedean Tiling
Euclidean plane tilings by convex regular polygons have been widely used since antiquity. The first systematic mathematical treatment was that of Kepler in his (Latin: ''The Harmony of the World'', 1619). Notation of Euclidean tilings Euclidean tilings are usually named after Cundy & Rollett’s notation. This notation represents (i) the number of vertices, (ii) the number of polygons around each vertex (arranged clockwise) and (iii) the number of sides to each of those polygons. For example: 36; 36; 34.6, tells us there are 3 vertices with 2 different vertex types, so this tiling would be classed as a ‘3-uniform (2-vertex types)’ tiling. Broken down, 36; 36 (both of different transitivity class), or (36)2, tells us that there are 2 vertices (denoted by the superscript 2), each with 6 equilateral 3-sided polygons (triangles). With a final vertex 34.6, 4 more contiguous equilateral triangles and a single regular hexagon. However, this notation has two main problems relate ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |