Archimedean Spiral
The Archimedean spiral (also known as Archimedes' spiral, the arithmetic spiral) is a spiral named after the 3rd-century BC Ancient Greece, Greek mathematician Archimedes. The term ''Archimedean spiral'' is sometimes used to refer to the more general class of spirals of this type (see below), in contrast to ''Archimedes' spiral'' (the specific arithmetic spiral of Archimedes). It is the locus (mathematics), locus corresponding to the locations over time of a point moving away from a fixed point with a constant speed along a line that rotates with constant angular velocity. Equivalently, in Polar coordinate system, polar coordinates it can be described by the equation r = b\cdot\theta with real number . Changing the parameter controls the distance between loops. From the above equation, it can thus be stated: position of the particle from point of start is proportional to angle as time elapses. Archimedes described such a spiral in his book ''On Spirals''. Conon of Samos was a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Position (vector)
In geometry, a position or position vector, also known as location vector or radius vector, is a Euclidean vector that represents a point ''P'' in space. Its length represents the distance in relation to an arbitrary reference origin ''O'', and its direction represents the angular orientation with respect to given reference axes. Usually denoted x, r, or s, it corresponds to the straight line segment from ''O'' to ''P''. In other words, it is the displacement or translation that maps the origin to ''P'': :\mathbf=\overrightarrow. The term position vector is used mostly in the fields of differential geometry, mechanics and occasionally vector calculus. Frequently this is used in two-dimensional or three-dimensional space, but can be easily generalized to Euclidean spaces and affine spaces of any dimension.Keller, F. J., Gettys, W. E. et al. (1993), p. 28–29. Relative position The relative position of a point ''Q'' with respect to point ''P'' is the Euclidean vector res ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Angle Trisection
Angle trisection is a classical problem of straightedge and compass construction of ancient Greek mathematics. It concerns construction of an angle equal to one third of a given arbitrary angle, using only two tools: an unmarked straightedge and a Compass (drawing tool), compass. In 1837, Pierre Wantzel proved that the problem, as stated, is Proof of impossibility, impossible to solve for arbitrary angles. However, some special angles can be trisected: for example, it is trivial to trisect a right angle. It is possible to trisect an arbitrary angle by using tools other than straightedge and compass. For example, neusis construction, also known to ancient Greeks, involves simultaneous sliding and rotation of a marked straightedge, which cannot be achieved with the original tools. Other techniques were developed by mathematicians over the centuries. Because it is defined in simple terms, but complex to prove unsolvable, the problem of angle trisection is a frequent subject of pse ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Squaring The Circle
Squaring the circle is a problem in geometry first proposed in Greek mathematics. It is the challenge of constructing a square (geometry), square with the area of a circle, area of a given circle by using only a finite number of steps with a compass and straightedge. The difficulty of the problem raised the question of whether specified axioms of Euclidean geometry concerning the existence of Line (geometry), lines and circles implied the existence of such a square. In 1882, the task was proven to be impossible, as a consequence of the Lindemann–Weierstrass theorem, which proves that pi (\pi) is a transcendental number. That is, \pi is not the zero of a function, root of any polynomial with Rational number, rational coefficients. It had been known for decades that the construction would be impossible if \pi were transcendental, but that fact was not proven until 1882. Approximate constructions with any given non-perfect accuracy exist, and many such constructions have been f ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Lituus (mathematics)
300px, Branch for positive The lituus spiral () is a spiral in which the angle is inversely proportional to the square of the radius . This spiral, which has two branches depending on the sign of , is asymptotic to the axis. Its points of inflexion are at : (\theta, r) = \left(\tfrac12, \pm\sqrt\right). The curve was named for the ancient Roman lituus by Roger Cotes in a collection of papers entitled ''Harmonia Mensurarum'' (1722), which was published six years after his death. Coordinate representations Polar coordinates The representations of the lituus spiral in polar coordinates is given by the equation : r = \frac, where and . Cartesian coordinates The lituus spiral with the polar coordinates can be converted to Cartesian coordinates like any other spiral with the relationships and . With this conversion we get the parametric representations of the curve: : \begin x &= \frac \cos\theta, \\ y &= \frac \sin\theta. \\ \end These equations can in turn ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Fermat's Spiral
A Fermat's spiral or parabolic spiral is a plane curve with the property that the area between any two consecutive full turns around the spiral is invariant. As a result, the distance between turns grows in inverse proportion to their distance from the spiral center, contrasting with the Archimedean spiral (for which this distance is invariant) and the logarithmic spiral (for which the distance between turns is proportional to the distance from the center). Fermat spirals are named after Pierre de Fermat. Their applications include curvature continuous blending of curves, modeling phyllotaxis, plant growth and the shapes of certain spiral galaxy, spiral galaxies, and the design of variable capacitors, solar power reflector arrays, and cyclotrons. Coordinate representation Polar The representation of the Fermat spiral in polar coordinates is given by the equation r=\pm a\sqrt for . The parameter a is a scaling factor affecting the size of the spiral but not its shape. The tw ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hyperbolic Spiral
A hyperbolic spiral is a type of spiral with a Pitch angle of a spiral, pitch angle that increases with distance from its center, unlike the constant angles of logarithmic spirals or decreasing angles of Archimedean spirals. As this curve widens, it approaches an asymptotic line. It can be found in the view up a spiral staircase and the starting arrangement of certain footraces, and is used to model spiral galaxy, spiral galaxies and Volute, architectural volutes. As a plane curve, a hyperbolic spiral can be described in polar coordinates (r,\varphi) by the equation r=\frac, for an arbitrary choice of the scale factor a. Because of the Multiplicative inverse, reciprocal relation between r and \varphi it is also called a reciprocal spiral. The same relation between Cartesian coordinates would describe a hyperbola, and the hyperbolic spiral was first discovered by applying the equation of a hyperbola to polar coordinates. Hyperbolic spirals can also be generated as the inverse cu ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Evolute
In the differential geometry of curves, the evolute of a curve is the locus (mathematics), locus of all its Center of curvature, centers of curvature. That is to say that when the center of curvature of each point on a curve is drawn, the resultant shape will be the evolute of that curve. The evolute of a circle is therefore a single point at its center. Equivalently, an evolute is the envelope (mathematics), envelope of the perpendicular, normals to a curve. The evolute of a curve, a surface, or more generally a submanifold, is the caustic (mathematics), caustic of the normal map. Let be a smooth, regular submanifold in . For each point in and each vector , based at and normal to , we associate the point . This defines a Lagrangian map, called the normal map. The caustic of the normal map is the evolute of . Evolutes are closely connected to involutes: A curve is the evolute of any of its involutes. History Apollonius of Perga, Apollonius ( 200 BC) discussed evolut ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Geometric Progression
A geometric progression, also known as a geometric sequence, is a mathematical sequence of non-zero numbers where each term after the first is found by multiplying the previous one by a fixed number called the ''common ratio''. For example, the sequence 2, 6, 18, 54, ... is a geometric progression with a common ratio of 3. Similarly 10, 5, 2.5, 1.25, ... is a geometric sequence with a common ratio of 1/2. Examples of a geometric sequence are powers ''r''''k'' of a fixed non-zero number ''r'', such as 2''k'' and 3''k''. The general form of a geometric sequence is :a,\ ar,\ ar^2,\ ar^3,\ ar^4,\ \ldots where ''r'' is the common ratio and ''a'' is the initial value. The sum of a geometric progression's terms is called a '' geometric series''. Properties The ''n''th term of a geometric sequence with initial value ''a'' = ''a''1 and common ratio ''r'' is given by :a_n = a\,r^, and in general :a_n = a_m\,r^. Geometric sequences satisfy the linear recurrence relation :a_n = r\,a_ f ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Logarithmic Spiral
A logarithmic spiral, equiangular spiral, or growth spiral is a self-similarity, self-similar spiral curve that often appears in nature. The first to describe a logarithmic spiral was Albrecht Dürer (1525) who called it an "eternal line" ("ewige Linie"). More than a century later, the curve was discussed by René Descartes, Descartes (1638), and later extensively investigated by Jacob Bernoulli, who called it ''Spira mirabilis'', "the marvelous spiral". The logarithmic spiral is distinct from the Archimedean spiral in that the distances between the turnings of a logarithmic spiral increase in a geometric progression, whereas for an Archimedean spiral these distances are constant. Definition In polar coordinates (r, \varphi) the logarithmic spiral can be written as r = ae^,\quad \varphi \in \R, or \varphi = \frac \ln \frac, with e (mathematical constant), e being the base of natural logarithms, and a > 0, k\ne 0 being real constants. In Cartesian coordinates The logarithmi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Radian
The radian, denoted by the symbol rad, is the unit of angle in the International System of Units (SI) and is the standard unit of angular measure used in many areas of mathematics. It is defined such that one radian is the angle subtended at the centre of a circle by an Circular arc, arc that is equal in length to the radius. The unit was formerly an SI supplementary unit and is currently a dimensionless unit, dimensionless SI derived unit,: "The CGPM decided to interpret the supplementary units in the SI, namely the radian and the steradian, as dimensionless derived units." defined in the SI as 1 rad = 1 and expressed in terms of the SI base unit metre (m) as . Angles without explicitly specified units are generally assumed to be measured in radians, especially in mathematical writing. Definition One radian is defined as the angle at the center of a circle in a plane that wikt:subtend, subtends an arc whose length equals the radius of the circle. More generally, the magnit ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Archimedean Spiral Polar
Archimedean means of or pertaining to or named in honor of the Greek mathematician Archimedes and may refer to: Mathematics *Archimedean absolute value * Archimedean circle * Archimedean constant * Archimedean copula *Archimedean field *Archimedean group * Archimedean point *Archimedean property *Archimedean solid *Archimedean spiral The Archimedean spiral (also known as Archimedes' spiral, the arithmetic spiral) is a spiral named after the 3rd-century BC Ancient Greece, Greek mathematician Archimedes. The term ''Archimedean spiral'' is sometimes used to refer to the more gene ... * Archimedean tiling Other uses *Archimedean screw * Claw of Archimedes * The Archimedeans, the mathematical society of the University of Cambridge * Archimedean Dynasty * Archimedean Upper Conservatory See also * Archimedes (other) * {{disambiguation ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |