Algorithm Aversion
Algorithm aversion is defined as a "biased assessment of an algorithm which manifests in negative behaviors and attitudes towards the algorithm compared to a human agent." This phenomenon describes the tendency of humans to reject advice or recommendations from an algorithm in situations where they would accept the same advice if it came from a human. Algorithms, particularly those utilizing machine learning methods or artificial intelligence (AI), play a growing role in decision-making across various fields. Examples include recommender systems in e-commerce for identifying products a customer might like and AI systems in healthcare that assist in diagnoses and treatment decisions. Despite their proven ability to outperform humans in many contexts, algorithmic recommendations are often met with resistance or rejection, which can lead to inefficiencies and suboptimal outcomes. The study of algorithm aversion is critical as algorithms become increasingly embedded in our daily live ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Algorithm
In mathematics and computer science, an algorithm () is a finite sequence of Rigour#Mathematics, mathematically rigorous instructions, typically used to solve a class of specific Computational problem, problems or to perform a computation. Algorithms are used as specifications for performing calculations and data processing. More advanced algorithms can use Conditional (computer programming), conditionals to divert the code execution through various routes (referred to as automated decision-making) and deduce valid inferences (referred to as automated reasoning). In contrast, a Heuristic (computer science), heuristic is an approach to solving problems without well-defined correct or optimal results.David A. Grossman, Ophir Frieder, ''Information Retrieval: Algorithms and Heuristics'', 2nd edition, 2004, For example, although social media recommender systems are commonly called "algorithms", they actually rely on heuristics as there is no truly "correct" recommendation. As an e ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Machine Learning
Machine learning (ML) is a field of study in artificial intelligence concerned with the development and study of Computational statistics, statistical algorithms that can learn from data and generalise to unseen data, and thus perform Task (computing), tasks without explicit Machine code, instructions. Within a subdiscipline in machine learning, advances in the field of deep learning have allowed Neural network (machine learning), neural networks, a class of statistical algorithms, to surpass many previous machine learning approaches in performance. ML finds application in many fields, including natural language processing, computer vision, speech recognition, email filtering, agriculture, and medicine. The application of ML to business problems is known as predictive analytics. Statistics and mathematical optimisation (mathematical programming) methods comprise the foundations of machine learning. Data mining is a related field of study, focusing on exploratory data analysi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Artificial Intelligence
Artificial intelligence (AI) is the capability of computer, computational systems to perform tasks typically associated with human intelligence, such as learning, reasoning, problem-solving, perception, and decision-making. It is a field of research in computer science that develops and studies methods and software that enable machines to machine perception, perceive their environment and use machine learning, learning and intelligence to take actions that maximize their chances of achieving defined goals. High-profile applications of AI include advanced web search engines (e.g., Google Search); recommendation systems (used by YouTube, Amazon (company), Amazon, and Netflix); virtual assistants (e.g., Google Assistant, Siri, and Amazon Alexa, Alexa); autonomous vehicles (e.g., Waymo); Generative artificial intelligence, generative and Computational creativity, creative tools (e.g., ChatGPT and AI art); and Superintelligence, superhuman play and analysis in strategy games (e.g., ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
E-commerce
E-commerce (electronic commerce) refers to commercial activities including the electronic buying or selling products and services which are conducted on online platforms or over the Internet. E-commerce draws on technologies such as mobile commerce, electronic funds transfer, supply chain management, Internet marketing, online transaction processing, electronic data interchange (EDI), inventory management systems, and automated data collection systems. E-commerce is the largest sector of the electronics industry and is in turn driven by the technological advances of the semiconductor industry. Defining e-commerce The term was coined and first employed by Robert Jacobson, Principal Consultant to the California State Assembly's Utilities & Commerce Committee, in the title and text of California's Electronic Commerce Act, carried by the late Committee Chairwoman Gwen Moore (D-L.A.) and enacted in 1984. E-commerce typically uses the web for at least a part of a transacti ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Human-in-the-loop
Human-in-the-loop (HITL) is used in multiple contexts. It can be defined as a model requiring human interaction. HITL is associated with modeling and simulation (M&S) in the live, virtual, and constructive taxonomy. HITL along with the related human-on-the-loop are also used in relation to lethal autonomous weapons. Further, HITL is used in the context of machine learning. Machine learning In machine learning, HITL is used in the sense of humans aiding the computer in making the correct decisions in building a model. HITL improves machine learning over random sampling by selecting the most critical data needed to refine the model. Simulation In simulation, HITL models may conform to human factors requirements as in the case of a mockup. In this type of simulation a human is always part of the simulation and consequently influences the outcome in such a way that is difficult if not impossible to reproduce exactly. HITL also readily allows for the identification of problems and re ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Explainable Artificial Intelligence
Explainable AI (XAI), often overlapping with interpretable AI, or explainable machine learning (XML), is a field of research within artificial intelligence (AI) that explores methods that provide humans with the ability of ''intellectual oversight'' over AI algorithms. The main focus is on the reasoning behind the decisions or predictions made by the AI algorithms, to make them more understandable and transparent. This addresses users' requirement to assess safety and scrutinize the automated decision making in applications. XAI counters the "black box" tendency of machine learning, where even the AI's designers cannot explain why it arrived at a specific decision. XAI hopes to help users of AI-powered systems perform more effectively by improving their understanding of how those systems reason. XAI may be an implementation of the social right to explanation. Even if there is no such legal right or regulatory requirement, XAI can improve the user experience of a product or servi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Bias
Bias is a disproportionate weight ''in favor of'' or ''against'' an idea or thing, usually in a way that is inaccurate, closed-minded, prejudicial, or unfair. Biases can be innate or learned. People may develop biases for or against an individual, a group, or a belief. In science and engineering, a bias is a systematic error. Statistical bias results from an unfair sampling of a population, or from an estimation process that does not give accurate results on average. Etymology The word appears to derive from Old Provençal into Old French ''biais'', "sideways, askance, against the grain". Whence comes French ''biais'', "a slant, a slope, an oblique". It seems to have entered English via the game of bowls">English (language)">English via the game of bowls, where it referred to balls made with a greater weight on one side. Which expanded to the figurative use, "a one-sided tendency of the mind", and, at first especially in law, "undue propensity or prejudice". or ballast, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |