9-orthoplex
In geometry, a 9-orthoplex or 9-cross polytope, is a regular 9-polytope with 18 vertices, 144 edges, 672 triangle faces, 2016 tetrahedron cells, 4032 5-cells ''4-faces'', 5376 5-simplex ''5-faces'', 4608 6-simplex ''6-faces'', 2304 7-simplex ''7-faces'', and 512 8-simplex ''8-faces''. It has two constructed forms, the first being regular with Schläfli symbol , and the second with alternately labeled (checkerboarded) facets, with Schläfli symbol or Coxeter symbol 611. It is one of an infinite family of polytopes, called cross-polytopes or ''orthoplexes''. The dual polytope is the 9-hypercube or enneract. Alternate names * Enneacross, derived from combining the family name ''cross polytope'' with ''ennea'' for nine (dimensions) in Greek * Pentacosidodecayotton as a 512- facetted 9-polytope (polyyotton) Construction There are two Coxeter groups associated with the 9-orthoplex, one regular, dual of the enneract with the C9 or ,37symmetry group, and a lower symmetry with ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
9-polytope
In nine-dimensional geometry, a nine-dimensional polytope or 9-polytope is a polytope contained by 8-polytope facets. Each 7-polytope Ridge (geometry), ridge being shared by exactly two 8-polytope Facet (mathematics), facets. A uniform 9-polytope is one which is vertex-transitive, and constructed from uniform 8-polytope Facet (geometry), facets. Regular 9-polytopes Regular 9-polytopes can be represented by the Schläfli symbol , with w 8-polytope Facet (mathematics), facets around each Peak (geometry), peak. There are exactly three such List of regular polytopes#Convex 4, convex regular 9-polytopes: # - 9-simplex # - 9-cube # - 9-orthoplex There are no nonconvex regular 9-polytopes. Euler characteristic The topology of any given 9-polytope is defined by its Betti numbers and torsion coefficient (topology), torsion coefficients.Richeson, D.; ''Euler's Gem: The Polyhedron Formula and the Birth of Topoplogy'', Princeton, 2008. The value of the Euler characteristic used t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
9-orthoplex
In geometry, a 9-orthoplex or 9-cross polytope, is a regular 9-polytope with 18 vertices, 144 edges, 672 triangle faces, 2016 tetrahedron cells, 4032 5-cells ''4-faces'', 5376 5-simplex ''5-faces'', 4608 6-simplex ''6-faces'', 2304 7-simplex ''7-faces'', and 512 8-simplex ''8-faces''. It has two constructed forms, the first being regular with Schläfli symbol , and the second with alternately labeled (checkerboarded) facets, with Schläfli symbol or Coxeter symbol 611. It is one of an infinite family of polytopes, called cross-polytopes or ''orthoplexes''. The dual polytope is the 9-hypercube or enneract. Alternate names * Enneacross, derived from combining the family name ''cross polytope'' with ''ennea'' for nine (dimensions) in Greek * Pentacosidodecayotton as a 512- facetted 9-polytope (polyyotton) Construction There are two Coxeter groups associated with the 9-orthoplex, one regular, dual of the enneract with the C9 or ,37symmetry group, and a lower symmetry with ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
9-cube
In geometry, a 9-cube is a nine-dimensional hypercube with 512 vertices, 2304 edges, 4608 square faces, 5376 cubic cells, 4032 tesseract 4-faces, 2016 5-cube 5-faces, 672 6-cube 6-faces, 144 7-cube 7-faces, and 18 8-cube 8-faces. It can be named by its Schläfli symbol , being composed of three 8-cubes around each 7-face. It is also called an enneract, a portmanteau of tesseract (the ''4-cube'') and ''enne'' for nine (dimensions) in Greek. It can also be called a regular octadeca-9-tope or octadecayotton, as a nine-dimensional polytope constructed with 18 regular facets. It is a part of an infinite family of polytopes, called hypercubes. The dual of a 9-cube can be called a 9-orthoplex, and is a part of the infinite family of cross-polytopes. Cartesian coordinates Cartesian coordinates for the vertices of a 9-cube centered at the origin and edge length 2 are : (±1,±1,±1,±1,±1,±1,±1,±1,±1) while the interior of the same consists of all points (''x''0, ''x''1, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Orthoplex
In geometry, a cross-polytope, hyperoctahedron, orthoplex, or cocube is a regular, convex polytope that exists in ''n''- dimensional Euclidean space. A 2-dimensional cross-polytope is a square, a 3-dimensional cross-polytope is a regular octahedron, and a 4-dimensional cross-polytope is a 16-cell. Its facets are simplexes of the previous dimension, while the cross-polytope's vertex figure is another cross-polytope from the previous dimension. The vertices of a cross-polytope can be chosen as the unit vectors pointing along each co-ordinate axis – i.e. all the permutations of . The cross-polytope is the convex hull of its vertices. The ''n''-dimensional cross-polytope can also be defined as the closed unit ball (or, according to some authors, its boundary) in the ℓ1-norm on R''n'': :\. In 1 dimension the cross-polytope is simply the line segment minus;1, +1 in 2 dimensions it is a square (or diamond) with vertices . In 3 dimensions it is an octahedron—one of the fi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Octadecagon
In geometry, an octadecagon (or octakaidecagon) or 18-gon is an eighteen-sided polygon. Regular octadecagon A ''regular octadecagon'' has a Schläfli symbol and can be constructed as a quasiregular truncated enneagon, t, which alternates two types of edges. Construction As 18 = 2 × 32, a regular octadecagon cannot be constructed using a compass and straightedge. However, it is constructible using neusis, or an angle trisection with a tomahawk. The following approximate construction is very similar to that of the enneagon, as an octadecagon can be constructed as a truncated enneagon. It is also feasible with exclusive use of compass and straightedge. Symmetry The ''regular octadecagon'' has Dih18 symmetry, order 36. There are 5 subgroup dihedral symmetries: Dih9, (Dih6, Dih3), and (Dih2 Dih1), and 6 cyclic group symmetries: (Z18, Z9), (Z6, Z3), and (Z2, Z1). These 15 symmetries can be seen in 12 distinct symmetries on the octadecagon. John Conway labels these by ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
8-simplex T0
In geometry, an 8-simplex is a self-dual regular 8-polytope. It has 9 vertices, 36 edges, 84 triangle faces, 126 tetrahedral cells, 126 5-cell 4-faces, 84 5-simplex 5-faces, 36 6-simplex 6-faces, and 9 7-simplex 7-faces. Its dihedral angle is cos−1(1/8), or approximately 82.82°. It can also be called an enneazetton, or ennea-8-tope, as a 9- facetted polytope in eight-dimensions. The name ''enneazetton'' is derived from ''ennea'' for nine facets in Greek and ''-zetta'' for having seven-dimensional facets, and ''-on''. As a configuration This configuration matrix represents the 8-simplex. The rows and columns correspond to vertices, edges, faces, cells, 4-faces, 5-faces, 6-faces and 7-faces. The diagonal numbers say how many of each element occur in the whole 8-simplex. The nondiagonal numbers say how many of the column's element occur in or at the row's element. This self-dual simplex's matrix is identical to its 180 degree rotation. \begin\begin 9 & 8 & 28 & 56 & ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
8-simplex
In geometry, an 8-simplex is a self-dual regular 8-polytope. It has 9 vertices, 36 edges, 84 triangle faces, 126 tetrahedral cells, 126 5-cell 4-faces, 84 5-simplex 5-faces, 36 6-simplex 6-faces, and 9 7-simplex 7-faces. Its dihedral angle is cos−1(1/8), or approximately 82.82°. It can also be called an enneazetton, or ennea-8-tope, as a 9- facetted polytope in eight-dimensions. The name ''enneazetton'' is derived from ''ennea'' for nine facets in Greek and ''-zetta'' for having seven-dimensional facets, and ''-on''. As a configuration This configuration matrix represents the 8-simplex. The rows and columns correspond to vertices, edges, faces, cells, 4-faces, 5-faces, 6-faces and 7-faces. The diagonal numbers say how many of each element occur in the whole 8-simplex. The nondiagonal numbers say how many of the column's element occur in or at the row's element. This self-dual simplex's matrix is identical to its 180 degree rotation. \begin\begin 9 & 8 & 28 & 56 & 70 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Triangle
A triangle is a polygon with three edges and three vertices. It is one of the basic shapes in geometry. A triangle with vertices ''A'', ''B'', and ''C'' is denoted \triangle ABC. In Euclidean geometry, any three points, when non- collinear, determine a unique triangle and simultaneously, a unique plane (i.e. a two-dimensional Euclidean space). In other words, there is only one plane that contains that triangle, and every triangle is contained in some plane. If the entire geometry is only the Euclidean plane, there is only one plane and all triangles are contained in it; however, in higher-dimensional Euclidean spaces, this is no longer true. This article is about triangles in Euclidean geometry, and in particular, the Euclidean plane, except where otherwise noted. Types of triangle The terminology for categorizing triangles is more than two thousand years old, having been defined on the very first page of Euclid's Elements. The names used for modern classification a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Hanner Polytope
In geometry, a Hanner polytope is a convex polytope constructed recursively by Cartesian product and polar dual operations. Hanner polytopes are named after Olof Hanner, who introduced them in 1956.. Construction The Hanner polytopes are constructed recursively by the following rules:. *A line segment is a one-dimensional Hanner polytope *The Cartesian product of every two Hanner polytopes is another Hanner polytope, whose dimension is the sum of the dimensions of the two given polytopes *The dual of a Hanner polytope is another Hanner polytope of the same dimension. They are exactly the polytopes that can be constructed using only these rules: that is, every Hanner polytope can be formed from line segments by a sequence of product and dual operations. Alternatively and equivalently to the polar dual operation, the Hanner polytopes may be constructed by Cartesian products and direct sums, the dual of the Cartesian products. This direct sum operation combines two polytopes by placi ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Convex Polytope
A convex polytope is a special case of a polytope, having the additional property that it is also a convex set contained in the n-dimensional Euclidean space \mathbb^n. Most texts. use the term "polytope" for a bounded convex polytope, and the word "polyhedron" for the more general, possibly unbounded object. Others''Mathematical Programming'', by Melvyn W. Jeter (1986) p. 68/ref> (including this article) allow polytopes to be unbounded. The terms "bounded/unbounded convex polytope" will be used below whenever the boundedness is critical to the discussed issue. Yet other texts identify a convex polytope with its boundary. Convex polytopes play an important role both in various branches of mathematics and in applied areas, most notably in linear programming. In the influential textbooks of Grünbaum and Ziegler on the subject, as well as in many other texts in discrete geometry, convex polytopes are often simply called "polytopes". Grünbaum points out that this is solely to avo ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Geometry
Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is called a '' geometer''. Until the 19th century, geometry was almost exclusively devoted to Euclidean geometry, which includes the notions of point, line, plane, distance, angle, surface, and curve, as fundamental concepts. During the 19th century several discoveries enlarged dramatically the scope of geometry. One of the oldest such discoveries is Carl Friedrich Gauss' ("remarkable theorem") that asserts roughly that the Gaussian curvature of a surface is independent from any specific embedding in a Euclidean space. This implies that surfaces can be studied ''intrinsically'', that is, as stand-alone spaces, and has been expanded into the theory of manifolds and Riemannian geometry. Later in the 19th century, it appeared that geom ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |