24-bit
Notable 24-bit machines include the CDC 924 – a 24-bit version of the CDC 1604, CDC lower 3000 series, SDS 930 and SDS 940, the ICT 1900 series, the Elliott 4100 series, and the Datacraft minicomputers/ Harris H series. The term SWORD is sometimes used to describe a 24-bit data type with the S prefix referring to sesqui. The range of unsigned integers that can be represented in 24 bits is 0 to 16,777,215 ( in hexadecimal). The range of signed integers that can be represented in 24 bits is −8,388,608 to 8,388,607. Usage The IBM System/360, announced in 1964, was a popular computer system with 24-bit addressing and 32-bit general registers and arithmetic. The early 1980s saw the first popular personal computers, including the IBM PC/AT with an Intel 80286 processor using 24-bit addressing and 16-bit general registers and arithmetic, and the Apple Macintosh 128K with a Motorola 68000 processor featuring 24-bit addressing and 32-bit registers. The eZ80 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
CDC 3000
The CDC 3000 series ("thirty-six hundred" or "thirty-one hundred") are a family of mainframe computers from Control Data Corporation (CDC). The first member, the CDC 3600, was a 48-bit system introduced in 1963. The same basic design led to the cut-down CDC 3400 of 1964, and then the 24-bit CDC 3300, 3200 and 3100 introduced between 1964 and 1965. The 3000 series replaced the earlier CDC 1604 and CDC 924 systems. The line was a great success and became CDC's cash cow through the 1960s. The series significantly outsold the much faster and more expensive machines in the CDC 6000 series, but the performance of the 3000's relative to other vendors quickly eroded. The line was phased out of production in the early 1970s in favour of new members of the 6000 series, and then the CDC Cyber series, initially based on the 6600 design but spanning a wide range of performance. Specifications Upper 3000 series The upper 3000 series uses a 48-bit word size. The first 3000 machine to ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
65816
The W65C816S (also 65C816 or 65816) is a 16-bit microprocessor (MPU) developed and sold by the Western Design Center (WDC). Introduced in 1985, the W65C816S is an enhanced version of the WDC 65C02 8-bit MPU, itself a CMOS enhancement of the venerable MOS Technology 6502 NMOS MPU. The 65C816 is the CPU for the Apple IIGS and, in modified form, the Super Nintendo Entertainment System. The ''65'' in the part's designation comes from its 65C02 compatibility mode, and the ''816'' signifies that the MPU has selectable 8- and 16-bit register sizes. In addition to the availability of 16-bit registers, the W65C816S extends memory addressing to 24 bits, supporting up to 16 megabytes of random-access memory. It has an enhanced instruction set and a 16-bit stack pointer, as well as several new electrical signals for improved system hardware management. At reset, the W65C816S starts in "emulation mode", meaning it substantially behaves as a 65C02. Thereafter, the W65C816S may be switched t ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
ICT 1900 Series
ICT 1900 was a family of mainframe computers released by International Computers and Tabulators (ICT) and later International Computers Limited (ICL) during the 1960s and 1970s. The 1900 series was notable for being one of the few non-American competitors to the IBM System/360, enjoying significant success in the European and British Commonwealth markets. Origins In early 1963, ICT was engaged in negotiations to buy the computer business of Ferranti. In order to sweeten the deal, Ferranti demonstrated to ICT the Ferranti-Packard 6000 (FP6000) machine, which had been developed by its Canadian subsidiary Ferranti-Packard, to a design known as Harriac that had been initiated in Ferranti by Harry Johnson and fleshed out by Stanley Gill and John Iliffe. The FP6000 was an advanced design, notably including hardware support for multiprogramming. ICT considered using the FP6000 as their medium-sized processor in the 1965–1968 timeframe, replacing the ICT 1302. Anoth ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
CDC 1604
The CDC 1604 is a 48-bit computer designed and manufactured by Seymour Cray and his team at the Control Data Corporation (CDC). The 1604 is known as one of the first commercially successful transistorized computers. (The IBM 7090 was delivered earlier, in November 1959.) Legend has it that the 1604 designation was chosen by adding CDC's first street address (501 Park Avenue) to Cray's former project, the ERA- UNIVAC 1103. A cut-down 24-bit version, designated the CDC 924, was shortly thereafter produced, and delivered to NASA. The first 1604 was delivered to the U.S. Navy Post Graduate School in January 1960 for JOVIAL applications supporting major Fleet Operations Control Centers primarily for weather prediction in Hawaii, London, and Norfolk, Virginia. By 1964, over 50 systems were built. The CDC 3600, which added five op codes, succeeded the 1604, and "was largely compatible" with it. One of the 1604s was shipped to the Pentagon to DASA (Defense Atomic Support Agency) a ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
CDC 924
The CDC 1604 is a 48-bit computing, 48-bit computer designed and manufactured by Seymour Cray and his team at the Control Data Corporation (CDC). The 1604 is known as one of the first commercially successful transistor computer, transistorized computers. (The IBM 7090 was delivered earlier, in November 1959.) Legend has it that the 1604 designation was chosen by adding CDC's first street address (501 Park Avenue) to Cray's former project, the ERA-UNIVAC 1103. A cut-down 24-bit version, designated the #The 924, CDC 924, was shortly thereafter produced, and delivered to NASA. The first 1604 was delivered to the United States Navy, U.S. Navy Post Graduate School in January 1960 for JOVIAL applications supporting major Fleet Operations Control Centers primarily for weather prediction in Hawaii, London, and Norfolk, Virginia. By 1964, over 50 systems were built. The CDC 3000 series#Upper 3000 series, CDC 3600, which added five op codes, succeeded the 1604, and "was largely compatible ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
32-bit
In computer architecture, 32-bit computing refers to computer systems with a processor, memory, and other major system components that operate on data in a maximum of 32- bit units. Compared to smaller bit widths, 32-bit computers can perform large calculations more efficiently and process more data per clock cycle. Typical 32-bit personal computers also have a 32-bit address bus, permitting up to 4 GiB of RAM to be accessed, far more than previous generations of system architecture allowed. 32-bit designs have been used since the earliest days of electronic computing, in experimental systems and then in large mainframe and minicomputer systems. The first hybrid 16/32-bit microprocessor, the Motorola 68000, was introduced in the late 1970s and used in systems such as the original Apple Macintosh. Fully 32-bit microprocessors such as the HP FOCUS, Motorola 68020 and Intel 80386 were launched in the early to mid 1980s and became dominant by the early 1990s. This gener ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
EZ80
The Zilog eZ80 is an 8-bit microprocessor designed by Zilog as an updated version of the company's first product, the highly-successful Zilog Z80. The eZ80 is binary compatible with the Z80, but it operates almost three times faster at the same clock frequency. Design The eZ80 has a three-stage pipeline: fetch, decode, and execute. When an instruction changes the program counter, it flushes the instructions that the CPU is currently processing. Available at up to 50 MHz (2004), the performance is comparable to a Z80 clocked at 150 MHz if fast memory is used (i.e. no wait states for opcode fetches, for data, or for I/O) or even higher in some applications (a 16-bit addition is 11 times as fast as in the original). The original Z80-compatible 16-bit register configuration is supported. The eZ80 also supports direct continuous addressing of 16 MB of memory without a memory management unit, by extending most registers (HL, BC, DE, IX, IY, SP, and PC) from 16 to 2 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
SDS 930
The SDS 930 was a commercial 24-bit computer using bipolar junction transistors sold by Scientific Data Systems. It was announced in December 1963, with first installations in June 1964. Description An SDS 930 system consists of at least three standard () cabinets, weighing about . It is composed of an arithmetic and logic unit, at least 8,192 words (24-bit + simple parity bit) Core memory, magnetic-core memory, and the IO unit. Two's complement integer arithmetic is used. The machine has integer multiply and divide, but no floating-point hardware. An optional correlation and filtering unit (CFE) can be added, which is capable of very fast floating-point multiply-add operations (primarily intended for digital signal processing applications). A free-standing console is also provided, which includes binary displays of the machine's registers and switches to boot and debug programs. User input is by a Teleprinter, Teletype Model 35 ASR unit and a high-speed paper-tape reader (300 ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Motorola 68000
The Motorola 68000 (sometimes shortened to Motorola 68k or m68k and usually pronounced "sixty-eight-thousand") is a 16/32-bit complex instruction set computer (CISC) microprocessor, introduced in 1979 by Motorola Semiconductor Products Sector. The design implements a 32-bit instruction set, with 32-bit registers and a 16-bit internal data bus. The address bus is 24 bits and does not use memory segmentation, which made it easier to program for. Internally, it uses a 16-bit data arithmetic logic unit (ALU) and two more 16-bit ALUs used mostly for addresses, and has a 16-bit external data bus. For this reason, Motorola termed it a 16/32-bit processor. As one of the first widely available processors with a 32-bit instruction set, large unsegmented address space, and relatively high speed for the era, the 68k was a popular design through the 1980s. It was widely used in a new generation of personal computers with graphical user interfaces, including the Macintosh 128K, Amiga, ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
16-bit Computing
16-bit microcomputers are microcomputers that use 16-bit microprocessors. A 16-bit register can store 216 different values. The range of integer values that can be stored in 16 bits depends on the integer representation used. With the two most common representations, the range is 0 through 65,535 (216 − 1) for representation as an ( unsigned) binary number, and −32,768 (−1 × 215) through 32,767 (215 − 1) for representation as two's complement. Since 216 is 65,536, a processor with 16-bit memory addresses can directly access 64 KB (65,536 bytes) of byte-addressable memory. If a system uses segmentation with 16-bit segment offsets, more can be accessed. As of 2025, 16-bit microcontrollers cost well under a dollar (similar to close in price legacy 8-bit); the cheapest 16-bit microcontrollers cost less than other types including any 8-bit (and are more powerful, and easier to program generally), making 8-bit legacy microcontrollers not worth it for new applications ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
SDS 940
The SDS 940 was Scientific Data Systems' (SDS) first machine designed to directly support time-sharing. The 940 was based on the SDS 930's 24-bit CPU, with additional circuitry to provide protected memory and virtual memory. It was announced in February 1966 and shipped in April, becoming a major part of Tymshare's expansion during the 1960s. The influential Stanford Research Institute "oN-Line System" (NLS) was demonstrated on the system. This machine was later used to run Community Memory, the first bulletin board system. After SDS was acquired by Xerox in 1969 and became Xerox Data Systems, the SDS 940 was renamed as the XDS 940. History The design was originally created by the University of California, Berkeley as part of their Project Genie that ran between 1964 and 1969. Genie added memory management and controller logic to an existing SDS 930 computer to give it page-mapped virtual memory, which would be heavily copied by other designs. The 940 was simply a commerci ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |
|
Motorola 56000
The Motorola DSP56000 (also known as 56K) is a family of digital signal processor (DSP) chips produced by Motorola Semiconductor (later Freescale Semiconductor and then NXP) starting in 1986 with later models still being produced in the 2020s. The 56k series was intended mainly for signal processing in embedded systems, but was also used in a number of early computers, including the NeXT, Atari Falcon030 and SGI Indigo workstations, all using the 56001. Upgraded 56k versions are still used in audio equipment, radar systems, communications devices (like mobile phones) and various other embedded DSP applications. The 56000 was also used as the basis for the updated 96000, which was not commercially successful. Technical description The DSP56000 uses fixed-point arithmetic, with 24- bit program words and 24-bit data words. It includes two 24-bit registers, which can also be referred to as a single 48-bit register. It also includes two 56-bit accumulators, each with an ... [...More Info...]       [...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]   |