β-methylcrotonyl-CoA
   HOME





β-methylcrotonyl-CoA
3-Methylcrotonyl-CoA (β-Methylcrotonyl-CoA or MC-CoA) is an intermediate in the metabolism of leucine Leucine (symbol Leu or L) is an essential amino acid that is used in the biosynthesis of proteins. Leucine is an α-amino acid, meaning it contains an α-amino group (which is in the protonated −NH3+ form under biological conditions), an α-Car .... It is found in mitochondria, where it is formed from isovaleryl-coenzyme A by isovaleryl coenzyme A dehydrogenase. It then reacts with CO2 to yield 3-Methylcrotonyl-CoA carboxylase. Leucine metabolism See also * Methylcrotonyl-CoA carboxylase References Thioesters of coenzyme A {{biochem-stub ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Metabolic Intermediate
Metabolic intermediates are compounds produced during the conversion of substrates (starting molecules) into final products in biochemical reactions within cells. Although these intermediates are of relatively minor direct importance to cellular function, they can play important roles in the allosteric regulation of enzymes, glycolysis, the citric acid cycle, and amino acid synthesis. Metabolic pathways consist of a series of enzymatically catalyzed reactions where each step transforms a substrate into a product that serves as the substrate for the next reaction. Metabolic intermediates are compounds that form during these steps, and they are neither the starting substrate nor the final product of the pathway. These intermediates are crucial because they allow for regulation, energy storage, and extraction of chemical energy in a controlled manner. Types of Metabolic Intermediates Metabolic intermediates can belong to different biochemical classes based on the type o ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Leucine
Leucine (symbol Leu or L) is an essential amino acid that is used in the biosynthesis of proteins. Leucine is an α-amino acid, meaning it contains an α-amino group (which is in the protonated −NH3+ form under biological conditions), an α-Carboxylic acid, carboxylic acid group (which is in the deprotonated −COO− form under biological conditions), and a side chain Isobutyl, isobutyl group, making it a Chemical polarity, non-polar Aliphatic compound, aliphatic amino acid. It is Essential amino acid, essential in humans, meaning the body cannot synthesize it; it must be obtained from the diet. Human dietary sources are foods that contain protein, such as meats, dairy products, soy products, and beans and other legumes. It is genetic code, encoded by the codons UUA, UUG, CUU, CUC, CUA, and CUG. Leucine is named after the Greek language, Greek word for "white": ''λευκός'' (''leukós'', "white"), after its common appearance as a white powder, a property it shares with many ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Isovaleryl-coenzyme A
Isovaleryl-CoA (also known as 3-methylbutyryl-CoA) is a metabolic intermediate formed during the catabolism of the branched-chain amino acid, Leucine. It is a short-chain acyl-CoA thioester that plays a key role in mitochondrial energy metabolism. The compound is converted into 3-Methylcrotonyl-CoA, 3-methylcrotonyl-CoA by the enzyme isovaleryl-CoA dehydrogenase (IVD), a flavoprotein that catalyzes the third step in the leucine degradation pathway. Deficiency of this enzyme activity results in the accumulation of isovaleryl-CoA and related metabolites, leading to a rare autosomal recessive disorder known as isovaleric acidemia, characterized by metabolic crises, developmental delays, and a distinctive odor due to isovaleric acid buildup. The metabolism of isovaleryl-CoA is vital for proper amino acid utilization and energy homeostasis in humans. Catalysis of Isovaleryl-CoA dehydrogenase The enzyme, Isovaleryl-CoA dehydrogenase (IVD), part of the family of Acyl-CoA dehydrogenase, ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Isovaleryl Coenzyme A Dehydrogenase
In enzymology, an isovaleryl-CoA dehydrogenase () is an enzyme that catalyzes the chemical reaction :3-methylbutanoyl-CoA + acceptor \rightleftharpoons 3-methylbut-2-enoyl-CoA + reduced acceptor Thus, the two substrates of this enzyme are 3-methylbutanoyl-CoA and acceptor, whereas its two products are 3-methylbut-2-enoyl-CoA and reduced acceptor. This enzyme belongs to the family of oxidoreductases, specifically those acting on the CH-CH group of donor with other acceptors. The systematic name of this enzyme class is 3-methylbutanoyl-CoA:acceptor oxidoreductase. Other names in common use include isovaleryl-coenzyme A dehydrogenase, isovaleroyl-coenzyme A dehydrogenase, and 3-methylbutanoyl-CoA:(acceptor) oxidoreductase. This enzyme participates in valine, leucine and isoleucine degradation. It employs one cofactor, FAD. Structural studies As of late 2007, only one structure A structure is an arrangement and organization of interrelated elements in a material object or s ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Methylcrotonyl-CoA Carboxylase
Methylcrotonyl CoA carboxylase (, MCC) (3-methylcrotonyl CoA carboxylase, methylcrotonoyl-CoA carboxylase) is a biotin-requiring enzyme located in the mitochondria. MCC uses bicarbonate as a carboxyl group source to catalyze the carboxylation of a carbon adjacent to a carbonyl group performing the fourth step in processing leucine, an essential amino acid. Structure Gene Human MCC is a biotin dependent mitochondrial enzyme formed by the two subunits MCCCα and MCCCβ, encoded by ''MCCC1'' and ''MCCC2'' respectively. MCCC1 gene has 21 exons and resides on chromosome 3 at q27. MCCC2 gene has 19 exons and resides on chromosome 5 at q12-q13. Protein The enzyme contains α and β subunits. Human MCCCα is composed of 725 amino acids which harbor a covalently bound biotin essential for the ATP-dependent carboxylation; MCCCβ has 563 amino acids that possess carboxyltransferase activity which presumably is essential for binding to 3-methylcrotonyl CoA. The MCC holoenzyme is thought ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]