Zygotene
   HOME

TheInfoList



OR:

Meiosis (; , since it is a reductional division) is a special type of
cell division Cell division is the process by which a parent cell divides into two daughter cells. Cell division usually occurs as part of a larger cell cycle in which the cell grows and replicates its chromosome(s) before dividing. In eukaryotes, there ar ...
of
germ cells Germ or germs may refer to: Science * Germ (microorganism), an informal word for a pathogen * Germ cell, cell that gives rise to the gametes of an organism that reproduces sexually * Germ layer, a primary layer of cells that forms during embryo ...
in sexually-reproducing organisms that produces the
gametes A gamete (; , ultimately ) is a haploid cell that fuses with another haploid cell during fertilization in organisms that reproduce sexually. Gametes are an organism's reproductive cells, also referred to as sex cells. In species that produce ...
, such as sperm or
egg cells The egg cell, or ovum (plural ova), is the female reproductive cell, or gamete, in most anisogamous organisms (organisms that reproduce sexually with a larger, female gamete and a smaller, male one). The term is used when the female gamete is ...
. It involves two rounds of division that ultimately result in four cells with only one copy of each
chromosome A chromosome is a long DNA molecule with part or all of the genetic material of an organism. In most chromosomes the very long thin DNA fibers are coated with packaging proteins; in eukaryotic cells the most important of these proteins are ...
( haploid). Additionally, prior to the division, genetic material from the paternal and maternal copies of each chromosome is
crossed over ''Crossed Over'' is a 2002 Canadian television film directed by Bobby Roth, and starring Diane Keaton as Beverly Lowry and Jennifer Jason Leigh as Karla Faye Tucker. It is based on Lowry's memoir ''Crossed Over: A Murder, A Memoir''. Cast *Dian ...
, creating new combinations of code on each chromosome. Later on, during fertilisation, the haploid cells produced by meiosis from a male and female will fuse to create a cell with two copies of each chromosome again, the
zygote A zygote (, ) is a eukaryotic cell formed by a fertilization event between two gametes. The zygote's genome is a combination of the DNA in each gamete, and contains all of the genetic information of a new individual organism. In multicell ...
. Errors in meiosis resulting in
aneuploidy Aneuploidy is the presence of an abnormal number of chromosomes in a cell, for example a human cell having 45 or 47 chromosomes instead of the usual 46. It does not include a difference of one or more complete sets of chromosomes. A cell with any ...
(an abnormal number of chromosomes) are the leading known cause of miscarriage and the most frequent genetic cause of
developmental disabilities Developmental disability is a diverse group of chronic conditions, comprising mental or physical impairments that arise before adulthood. Developmental disabilities cause individuals living with them many difficulties in certain areas of life, espe ...
. In meiosis,
DNA replication In molecular biology, DNA replication is the biological process of producing two identical replicas of DNA from one original DNA molecule. DNA replication occurs in all living organisms acting as the most essential part for biological inheritanc ...
is followed by two rounds of cell division to produce four daughter cells, each with half the number of
chromosome A chromosome is a long DNA molecule with part or all of the genetic material of an organism. In most chromosomes the very long thin DNA fibers are coated with packaging proteins; in eukaryotic cells the most important of these proteins are ...
s as the original parent cell. The two meiotic divisions are known as
meiosis I Meiosis (; , since it is a reductional division) is a special type of cell division of germ cells in sexually-reproducing organisms that produces the gametes, such as sperm or egg cells. It involves two rounds of division that ultimately res ...
and meiosis II. Before meiosis begins, during S phase of the
cell cycle The cell cycle, or cell-division cycle, is the series of events that take place in a cell that cause it to divide into two daughter cells. These events include the duplication of its DNA (DNA replication) and some of its organelles, and sub ...
, the DNA of each chromosome is replicated so that it consists of two identical
sister chromatids A sister chromatid refers to the identical copies (chromatids) formed by the DNA replication of a chromosome, with both copies joined together by a common centromere. In other words, a sister chromatid may also be said to be 'one-half' of the dup ...
, which remain held together through sister chromatid cohesion. This S-phase can be referred to as "premeiotic S-phase" or "meiotic S-phase". Immediately following DNA replication, meiotic cells enter a prolonged G2-like stage known as meiotic
prophase Prophase () is the first stage of cell division in both mitosis and meiosis. Beginning after interphase, DNA has already been replicated when the cell enters prophase. The main occurrences in prophase are the condensation of the chromatin ret ...
. During this time,
homologous chromosome A couple of homologous chromosomes, or homologs, are a set of one maternal and one paternal chromosome that pair up with each other inside a cell during fertilization. Homologs have the same genes in the same loci where they provide points alon ...
s pair with each other and undergo genetic recombination, a programmed process in which DNA may be cut and then repaired, which allows them to exchange some of their
genetic information A nucleic acid sequence is a succession of bases signified by a series of a set of five different letters that indicate the order of nucleotides forming alleles within a DNA (using GACT) or RNA (GACU) molecule. By convention, sequences are usu ...
. A subset of recombination events results in
crossovers Crossover may refer to: Entertainment Albums and songs * ''Cross Over'' (Dan Peek album) * ''Crossover'' (Dirty Rotten Imbeciles album), 1987 * ''Crossover'' (Intrigue album) * ''Crossover'' (Hitomi Shimatani album) * ''Crossover'' (Yoshino ...
, which create physical links known as chiasmata (singular: chiasma, for the Greek letter Chi (Χ)) between the homologous chromosomes. In most organisms, these links can help direct each pair of homologous chromosomes to segregate away from each other during meiosis I, resulting in two haploid cells that have half the number of chromosomes as the parent cell. During
meiosis II Meiosis (; , since it is a reductional division) is a special type of cell division of germ cells in sexually-reproducing organisms that produces the gametes, such as sperm or egg cells. It involves two rounds of division that ultimately res ...
, the cohesion between sister chromatids is released and they segregate from one another, as during mitosis. In some cases, all four of the meiotic products form
gametes A gamete (; , ultimately ) is a haploid cell that fuses with another haploid cell during fertilization in organisms that reproduce sexually. Gametes are an organism's reproductive cells, also referred to as sex cells. In species that produce ...
such as sperm,
spores In biology, a spore is a unit of sexual or asexual reproduction that may be adapted for dispersal and for survival, often for extended periods of time, in unfavourable conditions. Spores form part of the life cycles of many plants, algae, ...
or pollen. In female animals, three of the four meiotic products are typically eliminated by
extrusion Extrusion is a process used to create objects of a fixed cross-sectional profile by pushing material through a die of the desired cross-section. Its two main advantages over other manufacturing processes are its ability to create very complex ...
into
polar bodies A polar body is a small haploid cell that is formed at the same time as an egg cell during oogenesis, but generally does not have the ability to be fertilized. It is named from its polar position in the egg. When certain diploid cells in animals ...
, and only one cell develops to produce an ovum. Because the number of chromosomes is halved during meiosis, gametes can fuse (i.e.
fertilization Fertilisation or fertilization (see spelling differences), also known as generative fertilisation, syngamy and impregnation, is the fusion of gametes to give rise to a new individual organism or offspring and initiate its development. Proce ...
) to form a diploid
zygote A zygote (, ) is a eukaryotic cell formed by a fertilization event between two gametes. The zygote's genome is a combination of the DNA in each gamete, and contains all of the genetic information of a new individual organism. In multicell ...
that contains two copies of each chromosome, one from each parent. Thus, alternating cycles of meiosis and fertilization enable
sexual reproduction Sexual reproduction is a type of reproduction that involves a complex life cycle in which a gamete ( haploid reproductive cells, such as a sperm or egg cell) with a single set of chromosomes combines with another gamete to produce a zygote th ...
, with successive generations maintaining the same number of chromosomes. For example, diploid human cells contain 23 pairs of chromosomes including 1 pair of sex chromosomes (46 total), half of maternal origin and half of paternal origin. Meiosis produces haploid gametes (ova or sperm) that contain one set of 23 chromosomes. When two gametes (an egg and a sperm) fuse, the resulting zygote is once again diploid, with the mother and father each contributing 23 chromosomes. This same pattern, but not the same number of chromosomes, occurs in all organisms that utilize meiosis. Meiosis occurs in all sexually-reproducing single-celled and
multicellular A multicellular organism is an organism that consists of more than one cell, in contrast to unicellular organism. All species of animals, land plants and most fungi are multicellular, as are many algae, whereas a few organisms are partially un ...
organisms (which are all eukaryotes), including
animal Animals are multicellular, eukaryotic organisms in the Kingdom (biology), biological kingdom Animalia. With few exceptions, animals Heterotroph, consume organic material, Cellular respiration#Aerobic respiration, breathe oxygen, are Motilit ...
s,
plant Plants are predominantly photosynthetic eukaryotes of the kingdom Plantae. Historically, the plant kingdom encompassed all living things that were not animals, and included algae and fungi; however, all current definitions of Plantae exclu ...
s and
fungi A fungus ( : fungi or funguses) is any member of the group of eukaryotic organisms that includes microorganisms such as yeasts and molds, as well as the more familiar mushrooms. These organisms are classified as a kingdom, separately from ...
. It is an essential process for oogenesis and spermatogenesis.


Overview

Although the process of meiosis is related to the more general cell division process of mitosis, it differs in two important respects: Meiosis begins with a diploid cell, which contains two copies of each chromosome, termed
homologs A couple of homologous chromosomes, or homologs, are a set of one maternal and one paternal chromosome that pair up with each other inside a cell during fertilization. Homologs have the same genes in the same loci where they provide points alon ...
. First, the cell undergoes
DNA replication In molecular biology, DNA replication is the biological process of producing two identical replicas of DNA from one original DNA molecule. DNA replication occurs in all living organisms acting as the most essential part for biological inheritanc ...
, so each homolog now consists of two identical sister chromatids. Then each set of homologs pair with each other and exchange genetic information by
homologous recombination Homologous recombination is a type of genetic recombination in which genetic information is exchanged between two similar or identical molecules of double-stranded or single-stranded nucleic acids (usually DNA as in cellular organisms but may ...
often leading to physical connections (
crossovers Crossover may refer to: Entertainment Albums and songs * ''Cross Over'' (Dan Peek album) * ''Crossover'' (Dirty Rotten Imbeciles album), 1987 * ''Crossover'' (Intrigue album) * ''Crossover'' (Hitomi Shimatani album) * ''Crossover'' (Yoshino ...
) between the homologs. In the first meiotic division, the homologs are segregated to separate daughter cells by the
spindle apparatus In cell biology, the spindle apparatus refers to the cytoskeletal structure of eukaryotic cells that forms during cell division to separate sister chromatids between daughter cells. It is referred to as the mitotic spindle during mitosis, a p ...
. The cells then proceed to a second division without an intervening round of DNA replication. The sister chromatids are segregated to separate daughter cells to produce a total of four haploid cells. Female animals employ a slight variation on this pattern and produce one large ovum and two small polar bodies. Because of recombination, an individual chromatid can consist of a new combination of maternal and paternal genetic information, resulting in offspring that are genetically distinct from either parent. Furthermore, an individual gamete can include an assortment of maternal, paternal, and recombinant chromatids. This genetic diversity resulting from sexual reproduction contributes to the variation in traits upon which
natural selection Natural selection is the differential survival and reproduction of individuals due to differences in phenotype. It is a key mechanism of evolution, the change in the heritable traits characteristic of a population over generations. Cha ...
can act. Meiosis uses many of the same mechanisms as mitosis, the type of cell division used by eukaryotes to divide one cell into two identical daughter cells. In some plants, fungi, and
protist A protist () is any eukaryotic organism (that is, an organism whose cells contain a cell nucleus) that is not an animal, plant, or fungus. While it is likely that protists share a common ancestor (the last eukaryotic common ancestor), the exc ...
s meiosis results in the formation of spores: haploid cells that can divide vegetatively without undergoing fertilization. Some eukaryotes, like
bdelloid rotifers Bdelloidea (Greek ''βδέλλα'', ''bdella'', "leech") is a class of rotifers found in freshwater habitats all over the world. There are over 450 described species of bdelloid rotifers (or 'bdelloids'), distinguished from each other mainl ...
, do not have the ability to carry out meiosis and have acquired the ability to reproduce by
parthenogenesis Parthenogenesis (; from the Greek grc, παρθένος, translit=parthénos, lit=virgin, label=none + grc, γένεσις, translit=génesis, lit=creation, label=none) is a natural form of asexual reproduction in which growth and developmen ...
. Meiosis does not occur in archaea or
bacteria Bacteria (; singular: bacterium) are ubiquitous, mostly free-living organisms often consisting of one Cell (biology), biological cell. They constitute a large domain (biology), domain of prokaryotic microorganisms. Typically a few micrometr ...
, which generally reproduce asexually via
binary fission Binary may refer to: Science and technology Mathematics * Binary number, a representation of numbers using only two digits (0 and 1) * Binary function, a function that takes two arguments * Binary operation, a mathematical operation that ta ...
. However, a "sexual" process known as
horizontal gene transfer Horizontal gene transfer (HGT) or lateral gene transfer (LGT) is the movement of genetic material between unicellular and/or multicellular organisms other than by the ("vertical") transmission of DNA from parent to offspring (reproduction). H ...
involves the transfer of DNA from one bacterium or
archaeon Archaea ( ; singular archaeon ) is a domain of single-celled organisms. These microorganisms lack cell nuclei and are therefore prokaryotes. Archaea were initially classified as bacteria, receiving the name archaebacteria (in the Archaebact ...
to another and recombination of these DNA molecules of different parental origin.


History

Meiosis was discovered and described for the first time in sea urchin
egg An egg is an organic vessel grown by an animal to carry a possibly fertilized egg cell (a zygote) and to incubate from it an embryo within the egg until the embryo has become an animal fetus that can survive on its own, at which point the a ...
s in 1876 by the German biologist
Oscar Hertwig Oscar Hertwig (21 April 1849 in Friedberg – 25 October 1922 in Berlin) was a German embryologist and zoologist known for his research in developmental biology and evolution. Hertwig is credited as the first man to observe sexual reproduction ...
. It was described again in 1883, at the level of
chromosome A chromosome is a long DNA molecule with part or all of the genetic material of an organism. In most chromosomes the very long thin DNA fibers are coated with packaging proteins; in eukaryotic cells the most important of these proteins are ...
s, by the Belgian zoologist Edouard Van Beneden, in ''
Ascaris ''Ascaris'' is a genus of parasitic nematode worms known as the "small intestinal roundworms", which is a type of parasitic worm. One species, '' Ascaris lumbricoides'', affects humans and causes the disease ascariasis. Another species, ''Asc ...
'' roundworm eggs. The significance of meiosis for reproduction and inheritance, however, was described only in 1890 by German biologist
August Weismann August Friedrich Leopold Weismann FRS (For), HonFRSE, LLD (17 January 18345 November 1914) was a German evolutionary biologist. Fellow German Ernst Mayr ranked him as the second most notable evolutionary theorist of the 19th century, after Cha ...
, who noted that two cell divisions were necessary to transform one diploid cell into four haploid cells if the number of chromosomes had to be maintained. In 1911, the American geneticist
Thomas Hunt Morgan Thomas Hunt Morgan (September 25, 1866 – December 4, 1945) was an American evolutionary biologist, geneticist, embryologist, and science author who won the Nobel Prize in Physiology or Medicine in 1933 for discoveries elucidating the role that ...
detected crossovers in meiosis in the fruit fly ''
Drosophila melanogaster ''Drosophila melanogaster'' is a species of fly (the taxonomic order Diptera) in the family Drosophilidae. The species is often referred to as the fruit fly or lesser fruit fly, or less commonly the " vinegar fly" or "pomace fly". Starting with ...
'', which helped to establish that genetic traits are transmitted on chromosomes. The term "meiosis" is derived from the Greek word , meaning 'lessening'. It was introduced to biology by J.B. Farmer and J.E.S. Moore in 1905, using the idiosyncratic rendering "maiosis":
''We propose to apply the terms Maiosis or Maiotic phase to cover the whole series of nuclear changes included in the two divisions that were designated as Heterotype and Homotype by
Flemming Flemming is a surname and a male given name referring, like the more common '' Fleming'', to an inhabitant (or descendant thereof) of Flanders,
''.
The spelling was changed to "meiosis" by Koernicke (1905) and by Pantel and De Sinety (1906) to follow the usual conventions for transliterating Greek.


Phases

Meiosis is divided into
meiosis I Meiosis (; , since it is a reductional division) is a special type of cell division of germ cells in sexually-reproducing organisms that produces the gametes, such as sperm or egg cells. It involves two rounds of division that ultimately res ...
and
meiosis II Meiosis (; , since it is a reductional division) is a special type of cell division of germ cells in sexually-reproducing organisms that produces the gametes, such as sperm or egg cells. It involves two rounds of division that ultimately res ...
which are further divided into Karyokinesis I and Cytokinesis I and Karyokinesis II and Cytokinesis II respectively. The preparatory steps that lead up to meiosis are identical in pattern and name to interphase of the mitotic cell cycle.
Interphase Interphase is the portion of the cell cycle that is not accompanied by visible changes under the microscope, and includes the G1, S and G2 phases. During interphase, the cell grows (G1), replicates its DNA (S) and prepares for mitosis (G2). A c ...
is divided into three phases: * Growth 1 (G1) phase: In this very active phase, the cell synthesizes its vast array of proteins, including the enzymes and structural proteins it will need for growth. In G1, each of the chromosomes consists of a single linear molecule of DNA. * Synthesis (S) phase: The genetic material is replicated; each of the cell's chromosomes duplicates to become two identical
sister chromatid A sister chromatid refers to the identical copies (chromatids) formed by the DNA replication of a chromosome, with both copies joined together by a common centromere. In other words, a sister chromatid may also be said to be 'one-half' of the dup ...
s attached at a centromere. This replication does not change the ploidy of the cell since the centromere number remains the same. The identical sister chromatids have not yet condensed into the densely packaged chromosomes visible with the light microscope. This will take place during prophase I in meiosis. * Growth 2 (G2) phase: G2 phase as seen before mitosis is not present in meiosis. Meiotic prophase corresponds most closely to the G2 phase of the mitotic cell cycle. Interphase is followed by meiosis I and then meiosis II. Meiosis I separates replicated homologous chromosomes, each still made up of two sister chromatids, into two daughter cells, thus reducing the chromosome number by half. During meiosis II, sister chromatids decouple and the resultant daughter chromosomes are segregated into four daughter cells. For diploid organisms, the daughter cells resulting from meiosis are haploid and contain only one copy of each chromosome. In some species, cells enter a resting phase known as interkinesis between meiosis I and meiosis II. Meiosis I and II are each divided into
prophase Prophase () is the first stage of cell division in both mitosis and meiosis. Beginning after interphase, DNA has already been replicated when the cell enters prophase. The main occurrences in prophase are the condensation of the chromatin ret ...
,
metaphase Metaphase ( and ) is a stage of mitosis in the eukaryotic cell cycle in which chromosomes are at their second-most condensed and coiled stage (they are at their most condensed in anaphase). These chromosomes, carrying genetic information, alig ...
,
anaphase Anaphase () is the stage of mitosis after the process of metaphase, when replicated chromosomes are split and the newly-copied chromosomes (daughter chromatids) are moved to opposite poles of the cell. Chromosomes also reach their overall maxim ...
, and
telophase Telophase () is the final stage in both meiosis and mitosis in a eukaryotic cell. During telophase, the effects of prophase and prometaphase (the nucleolus and nuclear membrane disintegrating) are reversed. As chromosomes reach the cell poles, ...
stages, similar in purpose to their analogous subphases in the mitotic cell cycle. Therefore, meiosis includes the stages of meiosis I (prophase I, metaphase I, anaphase I, telophase I) and meiosis II (prophase II, metaphase II, anaphase II, telophase II). During meiosis, specific genes are more highly transcribed. In addition to strong meiotic stage-specific expression of
mRNA In molecular biology, messenger ribonucleic acid (mRNA) is a single-stranded molecule of RNA that corresponds to the genetic sequence of a gene, and is read by a ribosome in the process of synthesizing a protein. mRNA is created during the ...
, there are also pervasive translational controls (e.g. selective usage of preformed mRNA), regulating the ultimate meiotic stage-specific protein expression of genes during meiosis. Thus, both transcriptional and translational controls determine the broad restructuring of meiotic cells needed to carry out meiosis.


Meiosis I

Meiosis I segregates
homologous chromosome A couple of homologous chromosomes, or homologs, are a set of one maternal and one paternal chromosome that pair up with each other inside a cell during fertilization. Homologs have the same genes in the same loci where they provide points alon ...
s, which are joined as tetrads (2n, 4c), producing two haploid cells (n chromosomes, 23 in humans) which each contain chromatid pairs (1n, 2c). Because the ploidy is reduced from diploid to haploid, meiosis I is referred to as a ''reductional division''. Meiosis II is an ''equational division'' analogous to mitosis, in which the sister chromatids are segregated, creating four haploid daughter cells (1n, 1c).


Prophase I

Prophase I is by far the longest phase of meiosis (lasting 13 out of 14 days in mice). During prophase I, homologous maternal and paternal chromosomes pair, synapse, and exchange genetic information (by
homologous recombination Homologous recombination is a type of genetic recombination in which genetic information is exchanged between two similar or identical molecules of double-stranded or single-stranded nucleic acids (usually DNA as in cellular organisms but may ...
), forming at least one crossover per chromosome. These crossovers become visible as chiasmata (plural; singular chiasma). This process facilitates stable pairing between homologous chromosomes and hence enables accurate segregation of the chromosomes at the first meiotic division. The paired and replicated chromosomes are called bivalents (two chromosomes) or tetrads (four
chromatids A chromatid (Greek ''khrōmat-'' 'color' + ''-id'') is one half of a duplicated chromosome. Before replication, one chromosome is composed of one DNA molecule. In replication, the DNA molecule is copied, and the two molecules are known as chro ...
), with one chromosome coming from each parent. Prophase I is divided into a series of substages which are named according to the appearance of chromosomes.


= Leptotene

= The first stage of prophase I is the ''leptotene'' stage, also known as ''leptonema'', from Greek words meaning "thin threads". In this stage of prophase I, individual chromosomes—each consisting of two replicated sister chromatids—become "individualized" to form visible strands within the nucleus. The chromosomes each form a linear array of loops mediated by
cohesin Cohesin is a protein complex that mediates sister chromatid cohesion, homologous recombination, and DNA looping. Cohesin is formed of SMC3, SMC1, SCC1 and SCC3 ( SA1 or SA2 in humans). Cohesin holds sister chromatids together after DNA rep ...
, and the lateral elements of the synaptonemal complex assemble forming an "axial element" from which the loops emanate. Recombination is initiated in this stage by the enzyme SPO11 which creates programmed double strand breaks (around 300 per meiosis in mice). This process generates single stranded DNA filaments coated by RAD51 and
DMC1 Meiotic recombination protein DMC1/LIM15 homolog is a protein that in humans is encoded by the ''DMC1'' gene. Meiotic recombination protein Dmc1 is a homolog of the bacterial strand exchange protein RecA. Dmc1 plays the central role in homologous ...
which invade the homologous chromosomes, forming inter-axis bridges, and resulting in the pairing/co-alignment of homologues (to a distance of ~400 nm in mice).


=Zygotene

= Leptotene is followed by the ''zygotene'' stage, also known as ''zygonema'', from Greek words meaning "paired threads", which in some organisms is also called the bouquet stage because of the way the telomeres cluster at one end of the nucleus. In this stage the homologous chromosomes become much more closely (~100 nm) and stably paired (a process called synapsis) mediated by the installation of the transverse and central elements of the synaptonemal complex. Synapsis is thought to occur in a zipper-like fashion starting from a recombination nodule. The paired chromosomes are called bivalent or tetrad chromosomes.


=Pachytene

= The ''pachytene'' stage ( ), also known as ''pachynema'', from Greek words meaning "thick threads". is the stage at which all autosomal chromosomes have synapsed. In this stage homologous recombination, including chromosomal crossover (crossing over), is completed through the repair of the double strand breaks formed in leptotene. Most breaks are repaired without forming crossovers resulting in
gene conversion Gene conversion is the process by which one DNA sequence replaces a homologous sequence such that the sequences become identical after the conversion event. Gene conversion can be either allelic, meaning that one allele of the same gene replaces a ...
. However, a subset of breaks (at least one per chromosome) form crossovers between non-sister (homologous) chromosomes resulting in the exchange of genetic information.
Sex chromosomes A sex chromosome (also referred to as an allosome, heterotypical chromosome, gonosome, heterochromosome, or idiochromosome) is a chromosome that differs from an ordinary autosome in form, size, and behavior. The human sex chromosomes, a typical ...
, however, are not wholly identical, and only exchange information over a small region of homology called the
pseudoautosomal region The pseudoautosomal regions, PAR1, PAR2, are homologous sequences of nucleotides on the X and Y chromosomes. The pseudoautosomal regions get their name because any genes within them (so far at least 29 have been found for humans) are inherited ...
. The exchange of information between the homologous chromatids results in a recombination of information; each chromosome has the complete set of information it had before, and there are no gaps formed as a result of the process. Because the chromosomes cannot be distinguished in the synaptonemal complex, the actual act of crossing over is not perceivable through an ordinary light microscope, and chiasmata are not visible until the next stage.


=Diplotene

= During the ''diplotene'' stage, also known as ''diplonema'', from Greek words meaning "two threads", the synaptonemal complex disassembles and homologous chromosomes separate from one another a little. However, the homologous chromosomes of each bivalent remain tightly bound at chiasmata, the regions where crossing-over occurred. The chiasmata remain on the chromosomes until they are severed at the transition to anaphase I to allow homologous chromosomes to move to opposite poles of the cell. In human fetal oogenesis, all developing oocytes develop to this stage and are arrested in prophase I before birth. This suspended state is referred to as the ''dictyotene stage'' or dictyate. It lasts until meiosis is resumed to prepare the oocyte for ovulation, which happens at puberty or even later.


=Diakinesis

= Chromosomes condense further during the ''diakinesis'' stage, from Greek words meaning "moving through". This is the first point in meiosis where the four parts of the tetrads are actually visible. Sites of crossing over entangle together, effectively overlapping, making chiasmata clearly visible. Other than this observation, the rest of the stage closely resembles prometaphase of mitosis; the Nucleolus, nucleoli disappear, the nuclear membrane disintegrates into vesicles, and the Spindle apparatus, meiotic spindle begins to form.


=Meiotic spindle formation

= Unlike mitotic cells, human and mouse oocytes do not have centrosomes to produce the meiotic spindle. In mice, approximately 80 MicroTubule Organizing Centers (MTOCs) form a sphere in the ooplasm and begin to nucleate microtubules that reach out towards chromosomes, attaching to the chromosomes at the kinetochore. Over time the MTOCs merge until two poles have formed, generating a barrel shaped spindle. In human oocytes spindle microtubule nucleation begins on the chromosomes, forming an aster that eventually expands to surround the chromosomes. Chromosomes then slide along the microtubules towards the equator of the spindle, at which point the chromosome kinetochores form end-on attachments to microtubules.


Metaphase I

Homologous pairs move together along the metaphase plate: As ''kinetochore microtubules'' from both spindle poles attach to their respective kinetochores, the paired homologous chromosomes align along an equatorial plane that bisects the spindle, due to continuous counterbalancing forces exerted on the bivalents by the microtubules emanating from the two kinetochores of homologous chromosomes. This attachment is referred to as a bipolar attachment. The physical basis of the independent assortment of chromosomes is the random orientation of each bivalent along with the metaphase plate, with respect to the orientation of the other bivalents along the same equatorial line. The protein complex
cohesin Cohesin is a protein complex that mediates sister chromatid cohesion, homologous recombination, and DNA looping. Cohesin is formed of SMC3, SMC1, SCC1 and SCC3 ( SA1 or SA2 in humans). Cohesin holds sister chromatids together after DNA rep ...
holds sister chromatids together from the time of their replication until anaphase. In mitosis, the force of kinetochore microtubules pulling in opposite directions creates tension. The cell senses this tension and does not progress with anaphase until all the chromosomes are properly bi-oriented. In meiosis, establishing tension ordinarily requires at least one crossover per chromosome pair in addition to cohesin between sister chromatids (see Chromosome segregation).


Anaphase I

Kinetochore microtubules shorten, pulling homologous chromosomes (which each consist of a pair of sister chromatids) to opposite poles. Nonkinetochore microtubules lengthen, pushing the centrosomes farther apart. The cell elongates in preparation for division down the center. Unlike in mitosis, only the cohesin from the chromosome arms is degraded while the cohesin surrounding the centromere remains protected by a protein named Shugoshin (Japanese for "guardian spirit"), what prevents the sister chromatids from separating.Pierce, Benjamin (2009). «Chromosomes and Cell Reproduction». Genetics: A Conceptual Approach, Third Edition. W.H. FREEMAN AND CO. P. 32 This allows the sister chromatids to remain together while homologs are segregated.


Telophase I

The first meiotic division effectively ends when the chromosomes arrive at the poles. Each daughter cell now has half the number of chromosomes but each chromosome consists of a pair of chromatids. The microtubules that make up the spindle network disappear, and a new nuclear membrane surrounds each haploid set. The chromosomes uncoil back into chromatin. Cytokinesis, the pinching of the cell membrane in animal cells or the formation of the cell wall in plant cells, occurs, completing the creation of two daughter cells. However, cytokinesis does not fully complete resulting in "cytoplasmic bridges" which enable the cytoplasm to be shared between daughter cells until the end of meiosis II. Sister chromatids remain attached during telophase I. Cells may enter a period of rest known as interkinesis or interphase II. No DNA replication occurs during this stage.


Meiosis II

Meiosis II is the second meiotic division, and usually involves equational segregation, or separation of sister chromatids. Mechanically, the process is similar to mitosis, though its genetic results are fundamentally different. The end result is production of four haploid cells (n chromosomes, 23 in humans) from the two haploid cells (with n chromosomes, each consisting of two sister chromatids) produced in meiosis I. The four main steps of meiosis II are: prophase II, metaphase II, anaphase II, and telophase II. In prophase II, we see the disappearance of the nucleoli and the nuclear envelope again as well as the shortening and thickening of the chromatids. Centrosomes move to the polar regions and arrange spindle fibers for the second meiotic division. In metaphase II, the centromeres contain two kinetochores that attach to spindle fibers from the centrosomes at opposite poles. The new equatorial metaphase plate is rotated by 90 degrees when compared to meiosis I, perpendicular to the previous plate. This is followed by anaphase II, in which the remaining centromeric cohesin, not protected by Shugoshin anymore, is cleaved, allowing the sister chromatids to segregate. The sister chromatids by convention are now called sister chromosomes as they move toward opposing poles. The process ends with telophase II, which is similar to telophase I, and is marked by decondensation and lengthening of the chromosomes and the disassembly of the spindle. Nuclear envelopes re-form and cleavage or cell plate formation eventually produces a total of four daughter cells, each with a haploid set of chromosomes. Meiosis is now complete and ends up with four new daughter cells.


Origin and function

The new combinations of DNA created during meiosis are a significant source of genetic variation alongside mutation, resulting in new combinations of alleles, which may be beneficial. Meiosis generates gamete genetic diversity in two ways: (1) Law of Independent Assortment. The independent orientation of homologous chromosome pairs along the metaphase plate during metaphase I and orientation of sister chromatids in metaphase II, this is the subsequent separation of homologs and sister chromatids during anaphase I and II, it allows a random and independent distribution of chromosomes to each daughter cell (and ultimately to gametes); and (2) Crossing over, genetic, Crossing Over. The physical exchange of homologous chromosomal regions by homologous Homologous recombination, recombination during prophase I results in new combinations of genetic information within chromosomes.


Prophase I arrest

Female mammals and birds are born possessing all the oocytes needed for future ovulations, and these oocytes are arrested at the prophase I stage of meiosis. In humans, as an example, oocytes are formed between three and four months of gestation within the fetus and are therefore present at birth. During this prophase I arrested stage (dictyate), which may last for decades, four copies of the genome are present in the oocytes. The arrest of ooctyes at the four genome copy stage was proposed to provide the informational redundancy needed to DNA repair, repair damage in the DNA of the germline. The repair process used appears to involve
homologous recombination Homologous recombination is a type of genetic recombination in which genetic information is exchanged between two similar or identical molecules of double-stranded or single-stranded nucleic acids (usually DNA as in cellular organisms but may ...
al repair Prophase I arrested oocytes have a high capability for efficient repair of DNA damage (naturally occurring), DNA damages, particularly exogenously induced double-strand breaks. DNA repair capability appears to be a key quality control mechanism in the female germ line and a critical determinant of fertility.


Occurrence


In life cycles

Meiosis occurs in eukaryotic biological life cycle, life cycles involving
sexual reproduction Sexual reproduction is a type of reproduction that involves a complex life cycle in which a gamete ( haploid reproductive cells, such as a sperm or egg cell) with a single set of chromosomes combines with another gamete to produce a zygote th ...
, consisting of the constant cyclical process of meiosis and fertilization. This takes place alongside normal mitosis, mitotic cell division. In multicellular organisms, there is an intermediary step between the diploid and haploid transition where the organism grows. At certain stages of the life cycle, germ cells produce gametes. Somatic cells make up the body of the organism and are not involved in gamete production. Cycling meiosis and fertilization events produces a series of transitions back and forth between alternating haploid and diploid states. The organism phase of the life cycle can occur either during the diploid state (''diplontic'' life cycle), during the haploid state (''haplontic'' life cycle), or both (''haplodiplontic'' life cycle, in which there are two distinct organism phases, one during the haploid state and the other during the diploid state). In this sense there are three types of life cycles that utilize sexual reproduction, differentiated by the location of the organism phase(s). In the ''diplontic life cycle'' (with pre-gametic meiosis), of which humans are a part, the organism is diploid, grown from a diploid cell called the
zygote A zygote (, ) is a eukaryotic cell formed by a fertilization event between two gametes. The zygote's genome is a combination of the DNA in each gamete, and contains all of the genetic information of a new individual organism. In multicell ...
. The organism's diploid germ-line stem cells undergo meiosis to create haploid gametes (the spermatozoa for males and ovum, ova for females), which fertilize to form the zygote. The diploid zygote undergoes repeated cellular division by mitosis to grow into the organism. In the ''haplontic life cycle'' (with post-zygotic meiosis), the organism is haploid instead, spawned by the proliferation and differentiation of a single haploid cell called the gamete. Two organisms of opposing sex contribute their haploid gametes to form a diploid zygote. The zygote undergoes meiosis immediately, creating four haploid cells. These cells undergo mitosis to create the organism. Many Fungus, fungi and many protozoa utilize the haplontic life cycle. Finally, in the ''haplodiplontic life cycle'' (with sporic or intermediate meiosis), the living organism alternates between haploid and diploid states. Consequently, this cycle is also known as the alternation of generations. The diploid organism's germ-line cells undergo meiosis to produce spores. The spores proliferate by mitosis, growing into a haploid organism. The haploid organism's gamete then combines with another haploid organism's gamete, creating the zygote. The zygote undergoes repeated mitosis and differentiation to become a diploid organism again. The haplodiplontic life cycle can be considered a fusion of the diplontic and haplontic life cycles.


In plants and animals

Meiosis occurs in all animals and plants. The end result, the production of gametes with half the number of chromosomes as the parent cell, is the same, but the detailed process is different. In animals, meiosis produces gametes directly. In land plants and some algae, there is an alternation of generations such that meiosis in the diploid sporophyte generation produces haploid spores. These spores multiply by mitosis, developing into the haploid gametophyte generation, which then gives rise to gametes directly (i.e. without further meiosis). In both animals and plants, the final stage is for the gametes to fuse, restoring the original number of chromosomes.


In mammals

In females, meiosis occurs in cells known as oocytes (singular: oocyte). Each primary oocyte divides twice in meiosis, unequally in each case. The first division produces a daughter cell, and a much smaller polar body which may or may not undergo a second division. In meiosis II, division of the daughter cell produces a second polar body, and a single haploid cell, which enlarges to become an egg cell, ovum. Therefore, in females each primary oocyte that undergoes meiosis results in one mature ovum and one or two polar bodies. Note that there are pauses during meiosis in females. Maturing oocytes are arrested in prophase I of meiosis I and lie dormant within a protective shell of somatic cells called the ovarian follicle, follicle. At the beginning of each menstrual cycle, follicle-stimulating hormone, FSH secretion from the anterior pituitary stimulates a few follicles to mature in a process known as folliculogenesis. During this process, the maturing oocytes resume meiosis and continue until metaphase II of meiosis II, where they are again arrested just before ovulation. If these oocytes are fertilized by sperm, they will resume and complete meiosis. During folliculogenesis in humans, usually one follicle becomes dominant while the others undergo Follicular atresia, atresia. The process of meiosis in females occurs during oogenesis, and differs from the typical meiosis in that it features a long period of meiotic arrest known as the dictyate stage and lacks the assistance of centrosomes. In males, meiosis occurs during spermatogenesis in the seminiferous tubules of the testicles. Meiosis during spermatogenesis is specific to a type of cell called spermatocytes, which will later mature to become spermatozoon, spermatozoa. Meiosis of primordial germ cells happens at the time of puberty, much later than in females. Tissues of the male testis suppress meiosis by degrading retinoic acid, proposed to be a stimulator of meiosis. This is overcome at puberty when cells within seminiferous tubules called Sertoli cells start making their own retinoic acid. Sensitivity to retinoic acid is also adjusted by proteins called nanos and DAZL. Genetic loss-of-function studies on retinoic acid-generating enzymes have shown that retinoic acid is required postnatally to stimulate spermatogonia differentiation which results several days later in spermatocytes undergoing meiosis, however retinoic acid is not required during the time when meiosis initiates. In Female#Mammalian females, female mammals, meiosis begins immediately after primordial germ cells migrate to the ovary in the embryo. Some studies suggest that retinoic acid derived from the primitive kidney (mesonephros) stimulates meiosis in embryonic ovarian oogonia and that tissues of the embryonic male testis suppress meiosis by degrading retinoic acid. However, genetic loss-of-function studies on retinoic acid-generating enzymes have shown that retinoic acid is not required for initiation of either female meiosis which occurs during embryogenesis or male meiosis which initiates postnatally.


Flagellates

While the majority of eukaryotes have a two-divisional meiosis (though sometimes Chiasma (genetics), achiasmatic), a very rare form, one-divisional meiosis, occurs in some flagellates (parabasalids and oxymonads) from the gut of the wood-feeding cockroach ''Cryptocercus''.


Role in human genetics and disease

Recombination among the 23 pairs of human chromosomes is responsible for redistributing not just the actual chromosomes, but also pieces of each of them. There is also an estimated 1.6-fold more recombination in females relative to males. In addition, average, female recombination is higher at the centromeres and male recombination is higher at the telomeres. On average, 1 million bp (1 Mb) correspond to 1 cMorgan (cm = 1% recombination frequency). The frequency of cross-overs remain uncertain. In yeast, mouse and human, it has been estimated that ≥200 double-strand breaks (DSBs) are formed per meiotic cell. However, only a subset of DSBs (~5–30% depending on the organism), go on to produce crossovers, which would result in only 1-2 cross-overs per human chromosome.


Nondisjunction

The normal separation of chromosomes in meiosis I or sister chromatids in meiosis II is termed ''disjunction''. When the segregation is not normal, it is called ''nondisjunction''. This results in the production of gametes which have either too many or too few of a particular chromosome, and is a common mechanism for trisomy or monosomy. Nondisjunction can occur in the meiosis I or meiosis II, phases of cellular reproduction, or during mitosis. Most monosomic and trisomic human embryos are not viable, but some aneuploidies can be tolerated, such as trisomy for the smallest chromosome, chromosome 21. Phenotypes of these aneuploidies range from severe developmental disorders to asymptomatic. Medical conditions include but are not limited to: * Down syndrome – trisomy of chromosome 21 * Patau syndrome – trisomy of chromosome 13 * Edwards syndrome – trisomy of chromosome 18 * Klinefelter syndrome – extra X chromosomes in males – i.e. XXY, XXXY, XXXXY, etc. * Turner syndrome – lacking of one X chromosome in females – i.e. X0 * Triple X syndrome – an extra X chromosome in females * Jacobs syndrome – an extra Y chromosome in males. The probability of nondisjunction in human oocytes increases with increasing maternal age, presumably due to loss of
cohesin Cohesin is a protein complex that mediates sister chromatid cohesion, homologous recombination, and DNA looping. Cohesin is formed of SMC3, SMC1, SCC1 and SCC3 ( SA1 or SA2 in humans). Cohesin holds sister chromatids together after DNA rep ...
over time.


Comparison to mitosis

In order to understand meiosis, a comparison to mitosis is helpful. The table below shows the differences between meiosis and mitosis.


Molecular regulation

How a cell proceeds to meiotic division in meiotic cell division is not well known. Maturation promoting factor, Maturation promoting factor (MPF) seemingly have role in frog Oocyte meiosis. In the fungus Schizosaccharomyces pombe, ''S. pombe''. there is a role of MeiRNA binding protein for entry to meiotic cell division. It has been suggested that Yeast CEP1 gene product, that binds centromeric region CDE1, may play a role in chromosome pairing during meiosis-I. Meiotic recombination is mediated through double stranded break, which is catalyzed by Spo11 protein. Also Mre11, Sae2 and Exo1 play role in breakage and recombination. After the breakage happen, recombination take place which is typically homologous. The recombination may go through either a double Holliday junction (dHJ) pathway or synthesis-dependent strand annealing (SDSA). (The second one gives to noncrossover product). Seemingly there are checkpoints for meiotic cell division too. In S. pombe, Rad proteins, S. pombe Mek1 (with FHA kinase domain), Cdc25, Cdc2 and unknown factor is thought to form a checkpoint. In vertebrate oogenesis, maintained by cytostatic factor (CSF) has role in switching into meiosis-II.


See also

*Fertilisation *Coefficient of coincidence *DNA repair *Oxidative stress *Synizesis (biology) *Biological life cycle *Apomixis *Parthenogenesis *Alternation of generations *Brachymeiosis *Mitotic recombination *Dikaryon *Mating of yeast


References


Cited texts

*


External links


Meiosis Flash Animation





Khan Academy, video lecture

CCO
The Cell-Cycle Ontology
Stages of Meiosis animation
*
"Abby Dernburg Seminar: Chromosome Dynamics During Meiosis"
{{Authority control Meiosis, Cellular processes Cell cycle Molecular genetics Plant sexuality Articles containing video clips 1876 in science