HOME
        TheInfoList






The Standard Model of particle physics describes the electromagnetic interaction and the weak interaction as two different aspects of a single electroweak interaction. This theory was developed around 1968 by Sheldon Glashow, Abdus Salam and Steven Weinberg, and they were awarded the Standard Model of particle physics describes the electromagnetic interaction and the weak interaction as two different aspects of a single electroweak interaction. This theory was developed around 1968 by Sheldon Glashow, Abdus Salam and Steven Weinberg, and they were awarded the 1979 Nobel Prize in Physics for their work.[20] The Higgs mechanism provides an explanation for the presence of three massive gauge bosons (
W+
,
W
,
Z0
, the three carriers of the weak interaction) and the massless photon (γ, the carrier of the electromagnetic interaction).[21]

According to the electroweak theory, at very high energies, the universe has four components of the Higgs field whose interactions are carried by four massless gauge bosons – each similar to the photon – forming a complex scalar Higgs field doublet. However, at low energies, this gauge symmetry is Higgs field whose interactions are carried by four massless gauge bosons – each similar to the photon – forming a complex scalar Higgs field doublet. However, at low energies, this gauge symmetry is spontaneously broken down to the U(1) symmetry of electromagnetism, since one of the Higgs fields acquires a vacuum expectation value. This symmetry-breaking would be expected to produce three massless bosons, but instead they become integrated by the other three fields and acquire mass through the Higgs mechanism. These three boson integrations produce the
W+
,
W
and
Z0
bosons of the weak interaction. The fourth gauge boson is the photon of electromagnetism, and remains massless.[21]

This theory has made a number of predictions, including a prediction of the masses of the Z and W-bosons before their discovery and detection in 1983.

On 4 July 2012, the CMS and the ATLAS experimental teams at the Large Hadron Collider independently announced that they had confirmed the formal discovery of a previously unknown boson of mass between 125 and 127 GeV/c2, whose behaviour so far was "consistent with" a Higgs boson, while adding a cautious note that further data and analysis were needed before positively identifying the new boson as being a Higgs boson of some type. By 14 March 2013, a Higgs boson was tentatively confirmed to exist.[22]

In a speculative case where the electroweak symmetry breaking scale were lowered, the unbroken SU(2) interaction would eventually become confining. Alternative models where SU(2) becomes confining above that scale appear quantitatively similar to the Standard Model at lower energies, but dramatically different above symmetry breaking.[23]

The laws of nature were long thought to remain the same under mirror reflection. The results of an experiment viewed via a mirror were expected to be identical to the results of a mirror-reflected copy of the experimental apparatus. This so-called law of parity conservation was known to be respected by classical gravitation, electromagnetism and the strong interaction; it was assumed to be a universal law.[24] However, in the mid-1950s Chen-Ning Yang and Tsung-Dao Lee suggested that the weak interaction might violate this law. Chien Shiung Wu and collaborators in 1957 discovered that the weak interaction violates parity, earning Yang and Lee the 1957 Nobel Prize in Physics.[25]

Although the weak interaction was once described by Fermi's theory, the discovery of parity violation and renormalization theory suggested that a new approach was needed. In 1957, Robert Marshak and George Sudarshan and, somewhat later, Richard Feynman and Murray Gell-Mann proposed a V−A (vector minus axial vector or left-handed) Lagrangian for weak interactions. In this theory, the weak interaction acts only on left-handed particles (and right-handed antiparticles). Since the mirror reflection of a left-handed particle is right-handed, this explains the maximal violation of parity. The V−A theory was developed before the discovery of the Z boson, so it did not include the right-handed fields t

Although the weak interaction was once described by Fermi's theory, the discovery of parity violation and renormalization theory suggested that a new approach was needed. In 1957, Robert Marshak and George Sudarshan and, somewhat later, Richard Feynman and Murray Gell-Mann proposed a V−A (vector minus axial vector or left-handed) Lagrangian for weak interactions. In this theory, the weak interaction acts only on left-handed particles (and right-handed antiparticles). Since the mirror reflection of a left-handed particle is right-handed, this explains the maximal violation of parity. The V−A theory was developed before the discovery of the Z boson, so it did not include the right-handed fields that enter in the neutral current interaction.

However, this theory allowed a compound symmetry CP to be conserved. CP combines parity P (switching left to right) with charge conjugation C (switching particles with antiparticles). Physicists were again surprised when in 1964, James Cronin and Val Fitch provided clear evidence in kaon decays that CP symmetry could be broken too, winning them the 1980 Nobel Prize in Physics.[26] In 1973, Makoto Kobayashi and Toshihide Maskawa showed that CP violation in the weak interaction required more than two generations of particles,[27] effectively predicting the existence of a then unknown third generation. This discovery earned them half of the 2008 Nobel Prize in Physics.[28]

Unlike parity violation, CP violation occurs only in limited circumstances. Despite its rarity, it is widely believed to be the reason that there is much more matter than antimatter in the universe, and thus forms one of Andrei Sakharov's three conditions for baryogenesis.[29]