The Info List - Unified Modeling Language

--- Advertisement ---

(i) (i) (i) (i) (i)

The UNIFIED MODELING LANGUAGE (UML) is a general-purpose, developmental, modeling language in the field of software engineering , that is intended to provide a standard way to visualize the design of a system.

UML was originally motivated by the desire to standardize the disparate notational systems and approaches to software design developed by Grady Booch , Ivar Jacobson and James Rumbaugh at Rational Software in 1994–1995, with further development led by them through 1996.

In 1997 UML was adopted as a standard by the Object Management Group (OMG), and has been managed by this organization ever since. In 2005 UML was also published by the International Organization for Standardization (ISO) as an approved ISO standard. Since then it has been periodically revised to cover the latest revision of UML.


* 1 History

* 1.1 Before UML 1.x

* 1.2 UML 1.x

* 1.2.1 Cardinality notation

* 1.3 UML 2.x

* 2 Design

* 2.1 Software
development methods * 2.2 Modeling

* 3 Diagrams

* 3.1 Structure diagrams

* 3.2 Behavior diagrams

* 3.2.1 Interaction diagrams

* 4 Meta modeling * 5 Adoption * 6 See also * 7 References * 8 Further reading * 9 External links


History of object-oriented methods and notation


UML has been evolving since the second half of the 1990s and has its roots in the object-oriented programming methods developed in the late 1980s and early 1990s. The timeline (see image) shows the highlights of the history of object-oriented modeling methods and notation.

It is originally based on the notations of the Booch method , the object-modeling technique (OMT) and object-oriented software engineering (OOSE), which it has integrated into a single language.

Rational Software Corporation hired James Rumbaugh from General Electric in 1994 and after that the company became the source for two of the most popular object-oriented modeling approaches of the day: Rumbaugh's object-modeling technique (OMT) and Grady Booch 's method. They were soon assisted in their efforts by Ivar Jacobson , the creator of the object-oriented software engineering (OOSE) method, who joined them at Rational in 1995.


Under the technical leadership of those three (Rumbaugh, Jacobson and Booch), a consortium called the UML Partners was organized in 1996 to complete the Unified Modeling Language
Unified Modeling Language
(UML) specification, and propose it to the Object Management Group (OMG) for standardisation. The partnership also contained additional interested parties (for example HP , DEC , IBM
and Microsoft
). The UML Partners' UML 1.0 draft was proposed to the OMG in January 1997 by the consortium. During the same month the UML Partners formed a group, designed to define the exact meaning of language constructs, chaired by Cris Kobryn and administered by Ed Eykholt, to finalize the specification and integrate it with other standardization efforts. The result of this work, UML 1.1, was submitted to the OMG in August 1997 and adopted by the OMG in November 1997.

After the first release a task force was formed to improve the language, which released several minor revisions, 1.3, 1.4, and 1.5.

The standards it produced (as well as the original standard) have been noted as being ambiguous and inconsistent.

Cardinality Notation

As with database Chen, Bachman, and ISO ER diagrams , class models are specified to use "look-across" cardinalities , even though several authors ( Merise , Elmasri

* individual components of the system;

* and how they can interact with other software components ;

* how the system will run; * how entities interact with others (components and interfaces); * external user interface .

Although originally intended for object-oriented design documentation, UML has been extended to a larger set of design documentation (as listed above), and been found useful in many contexts.


UML is not a development method by itself; however, it was designed to be compatible with the leading object-oriented software development methods of its time, for example OMT , Booch method , Objectory and especially RUP that it was originally intended to be used with when work began at Rational Software.


It is important to distinguish between the UML model and the set of diagrams of a system. A diagram is a partial graphic representation of a system's model. The set of diagrams need not completely cover the model and deleting a diagram does not change the model. The model may also contain documentation that drives the model elements and diagrams (such as written use cases).

UML diagrams represent two different views of a system model:

* Static (or structural) view: emphasizes the static structure of the system using objects, attributes, operations and relationships. It includes class diagrams and composite structure diagrams . * Dynamic (or behavioral) view: emphasizes the dynamic behavior of the system by showing collaborations among objects and changes to the internal states of objects. This view includes sequence diagrams , activity diagrams and state machine diagrams .

UML models can be exchanged among UML tools by using the XML Metadata Interchange (XMI) format.




* Class diagram * Component diagram * Composite structure diagram * Deployment diagram * Object diagram * Package diagram * Profile diagram


* Activity diagram * Communication diagram * Interaction overview diagram * Sequence diagram * State diagram * Timing diagram * Use case diagram

* v * t * e

UML 2 has many types of diagrams, which are divided into two categories. Some types represent structural information, and the rest represent general types of behavior, including a few that represent different aspects of interactions. These diagrams can be categorized hierarchically as shown in the following class diagram:

These diagrams may all contain comments or notes explaining usage, constraint, or intent.


Structure diagrams emphasize the things that must be present in the system being modeled. Since structure diagrams represent the structure, they are used extensively in documenting the software architecture of software systems. For example, the component diagram describes how a software system is split up into components and shows the dependencies among these components.


Component diagram *

Class diagram


Behavior diagrams emphasize what must happen in the system being modeled. Since behavior diagrams illustrate the behavior of a system, they are used extensively to describe the functionality of software systems. As an example, the activity diagram describes the business and operational step-by-step activities of the components in a system.


Activity diagram *

Use case diagram

Interaction Diagrams

Interaction diagrams, a subset of behavior diagrams, emphasize the flow of control and data among the things in the system being modeled. For example, the sequence diagram shows how objects communicate with each other regarding a sequence of messages.


Sequence diagram *

Communication diagram


Main article: Meta-Object Facility Illustration of the Meta-Object Facility

The Object Management Group (OMG) has developed a metamodeling architecture to define the UML, called the Meta-Object Facility . MOF is designed as a four-layered architecture, as shown in the image at right. It provides a meta-meta model at the top, called the M3 layer. This M3-model is the language used by Meta-Object Facility to build metamodels, called M2-models.

The most prominent example of a Layer 2 Meta-Object Facility model is the UML metamodel, which describes the UML itself. These M2-models describe elements of the M1-layer, and thus M1-models. These would be, for example, models written in UML. The last layer is the M0-layer or data layer. It is used to describe runtime instances of the system.

The meta-model can be extended using a mechanism called stereotyping . This has been criticised as being insufficient/untenable by Brian Henderson-Sellers and Cesar Gonzalez-Perez in "Uses and Abuses of the Stereotype Mechanism in UML 1.x and 2.0".


UML has been marketed for many contexts.

It has been treated, at times, as a design silver bullet , which leads to problems. UML misuse includes overuse (designing every part of the system with it, which is unnecessary) and assuming that novices can design with it.

It is considered a large language, with many constructs . Some people (including Jacobson ) feel that UML's size hinders learning (and therefore, using) it.


* Software

* Object Oriented Role Analysis and Modeling * Model-based testing * Model-driven engineering * Applications of UML * List of Unified Modeling Language tools


This article is based on material taken from the Free On-line Dictionary of Computing prior to 1 November 2008 and incorporated under the "relicensing" terms of the GFDL , version 1.3 or later.

* ^ A B C D E Unified Modeling Language
Unified Modeling Language
User Guide, The (2 ed.). Addison-Wesley. 2005. p. 496. ISBN 0321267974 . , See the sample content, look for history * ^ "ISO/IEC 19501:2005 - Information technology - Open Distributed Processing - Unified Modeling Language
Unified Modeling Language
(UML) Version 1.4.2". Iso.org. 2005-04-01. Retrieved 2015-05-07. * ^ "ISO/IEC 19505-1:2012 - Information technology - Object Management Group Unified Modeling Language
Unified Modeling Language
(OMG UML) - Part 1: Infrastructure". Iso.org. 2012-04-20. Retrieved 2014-04-10. * ^ A B C D "OMG Unified Modeling Language
Unified Modeling Language
(OMG UML), Superstructure. Version 2.4.1". Object Management Group. Retrieved 9 April 2014. * ^ Andreas Zendler (1997) Advanced Concepts, Life Cycle Models and Tools for Objeckt-Oriented Software
Development. p.122 * ^ "UML Specification version 1.1 (OMG document ad/97-08-11)". Omg.org. Retrieved 2011-09-22. * ^ "UML". Omg.org. Retrieved 2014-04-10. * ^ Génova et alia 2004 "Open Issues in Industrial Use Case Modeling" * ^ "Will UML 2.0 Be Agile or Awkward?" (PDF). Retrieved 2011-09-22. * ^ Hubert Tardieu, Arnold Rochfeld and René Colletti La methode MERISE: Principes et outils (Paperback - 1983) * ^ Elmasri, Ramez, B. Shamkant, Navathe, Fundamentals of Database Systems, third ed., Addison-Wesley, Menlo Park, CA, USA, 2000. * ^ ER 2004 : 23rd International Conference on Conceptual Modeling, Shanghai, China, 8-12 November 2004 Archived 27 May 2013 at the Wayback Machine
Wayback Machine
. * ^ "A Formal Treatment of UML Class Diagrams as an Efficient Method for Configuration Management 2007" (PDF). Retrieved 2011-09-22.

* ^ "James Dullea, Il-Yeol Song, Ioanna Lamprou - An analysis of structural validity in entity-relationship modeling 2002" (PDF). Retrieved 2011-09-22. * ^ ""Reasoning about participation constraints and Chen\'s constraints" S Hartmann - 2003" (PDF). Retrieved 2013-08-17. * ^ "UML 2.0". Omg.org. Retrieved 2011-09-22. * ^ A B C "UML". Omg.org. Retrieved 2011-09-22. * ^ OMG. "OMG Formal Specifications (Modeling and Metadata paragraph)". Retrieved 2016-02-12. * ^ "Issues for UML 2.6 Revision task Force mailing list". Omg.org. Retrieved 2014-04-10. * ^ Satish Mishra (1997). "Visual Modeling & Unified Modeling Language (UML): Introduction to UML". Rational Software Corporation. Accessed 9 November 2008. * ^ A B "UML, Success Stories". Retrieved 9 April 2014. * ^ John Hunt (2000). The Unified Process for Practitioners: Object-oriented Design, UML and Java. Springer, 2000. ISBN 1-85233-275-1 . p.5.door * ^ Jon Holt Institution of Electrical Engineers (2004). UML for Systems Engineering: Watching the Wheels IET, 2004, ISBN 0-86341-354-4 . p.58 * ^ Iman Poernomo (2006) "The Meta-Object Facility Typed" in: Proceeding SAC '06 Proceedings of the 2006 ACM symposium on Applied computing. pp. 1845-1849 * ^ "UML 2.4.1 Infrastructure". Omg.org. 2011-08-05. Retrieved 2014-04-10. * ^ B. Henderson-Sellers; C. Gonzalez-Perez (2006). "Uses and Abuses of the Stereotype Mechanism in UML 1.x and 2.0". in: Model Driven Engineering Languages and Systems. Springer Berlin / Heidelberg. * ^ "UML 2.5: Do you even care?". "UML truly is ubiquitous" * ^ "Death by UML Fever". * ^ " Ivar Jacobson on UML, MDA, and the future of methodologies".


* Ambler, Scott William (2004). The Object Primer: Agile Model Driven Development with UML 2. Cambridge University Press. ISBN 0-521-54018-6 . * Chonoles, Michael Jesse; James A. Schardt (2003). UML 2 for Dummies. Wiley Publishing. ISBN 0-7645-2614-6 . * Fowler, Martin . UML Distilled: A Brief Guide to the Standard Object Modeling Language (3rd ed.). Addison-Wesley. ISBN 0-321-19368-7 . * Jacobson, Ivar ; Grady Booch; James Rumbaugh (1998). The Unified Software
Development Process. Addison Wesley Longman. ISBN 0-201-57169-2 . * Martin, Robert Cecil (2003). UML for Java Programmers. Prentice Hall. ISBN 0-13-142848-9 . * Noran, Ovidiu S. "Business Modelling: U