Triple helix
   HOME

TheInfoList



OR:

In the fields of
geometry Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is c ...
and
biochemistry Biochemistry or biological chemistry is the study of chemical processes within and relating to living organisms. A sub-discipline of both chemistry and biology, biochemistry may be divided into three fields: structural biology, enzymology and ...
, a triple helix (plural triple helices) is a set of three congruent geometrical helices with the same axis, differing by a
translation Translation is the communication of the meaning of a source-language text by means of an equivalent target-language text. The English language draws a terminological distinction (which does not exist in every language) between ''transla ...
along the axis. This means that each of the helices keeps the same distance from the central axis. As with a single helix, a triple helix may be characterized by its pitch, diameter, and handedness. Examples of triple helices include triplex DNA, triplex RNA, the
collagen helix In molecular biology, the collagen triple helix or type-2 helix is the main secondary structure of various types of fibrous collagen, including type I collagen. In 1954, Ramachandran & Kartha (13, 14) advanced a structure for the collagen tripl ...
, and collagen-like
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, res ...
s.


Structure

A triple helix is named such because it is made up of three separate helices. Each of these helices shares the same axis, but they do not take up the same space because each helix is translated angularly around the axis. Generally, the identity of a triple helix depends on the type of helices that make it up. For example: a triple helix made of three strands of collagen protein is a collagen triple helix, and a triple helix made of three strands of DNA is a DNA triple helix. As with other types of helices, triple helices have handedness: right-handed or left-handed. A right-handed helix moves around its axis in a clockwise direction from beginning to end. A left-handed helix is the right-handed helix's mirror image, and it moves around the axis in a counterclockwise direction from beginning to end. The beginning and end of a helical molecule are defined based on certain markers in the molecule that do not change easily. For example: the beginning of a helical protein is its N terminus, and the beginning of a single strand of DNA is its
5' end Directionality, in molecular biology and biochemistry, is the end-to-end chemical orientation of a single strand of nucleic acid. In a single strand of DNA or RNA, the chemical convention of naming carbon atoms in the nucleotide pentose-sugar- ...
. The
collagen Collagen () is the main structural protein in the extracellular matrix found in the body's various connective tissues. As the main component of connective tissue, it is the most abundant protein in mammals, making up from 25% to 35% of the whol ...
triple helix is made of three collagen peptides, each of which forms its own left-handed polyproline helix. When the three chains combine, the triple helix adopts a right-handed orientation. The collagen peptide is composed of repeats of Gly-X-Y, with the second residue (X) usually being
Pro Pro is an abbreviation meaning " professional". Pro, PRO or variants thereof may also refer to: People * Miguel Pro (1891–1927), Mexican priest * Pro Hart (1928–2006), Australian painter * Mlungisi Mdluli (born 1980), South African retire ...
and the third (Y) being hydroxyproline. A DNA triple helix is made up of three separate DNA strands, each oriented with the sugar/phosphate backbone on the outside of the helix and the bases on the inside of the helix. The bases are the part of the molecule closest to the triple helix's axis, and the backbone is the part of the molecule farthest away from the axis. The third strand occupies the major groove of relatively normal duplex DNA. The bases in triplex DNA are arranged to match up according to a
Hoogsteen A Hoogsteen base pair is a variation of base-pairing in nucleic acids such as the A•T pair. In this manner, two nucleobases, one on each strand, can be held together by hydrogen bonds in the major groove. A Hoogsteen base pair applies the N7 pos ...
base pairing scheme. Similarly, RNA triple helices are formed as a result of a single stranded RNA forming hydrogen bonds with an RNA duplex; the duplex consists of Watson-Crick base pairing while the third strand binds via Hoogsteen base pairing.


Stabilizing factors

The collagen triple helix has several characteristics that increase its stability. When proline is incorporated into the Y position of the Gly-X-Y sequence, it is
post-translationally modified Post-translational modification (PTM) is the covalent and generally enzyme, enzymatic modification of proteins following protein biosynthesis. This process occurs in the endoplasmic reticulum and the golgi apparatus. Proteins are synthesized by r ...
to
hydroxyproline (2''S'',4''R'')-4-Hydroxyproline, or L-hydroxyproline ( C5 H9 O3 N), is an amino acid, abbreviated as Hyp or O, ''e.g.'', in Protein Data Bank. Structure and discovery In 1902, Hermann Emil Fischer isolated hydroxyproline from hydrolyzed gelatin ...
. The hydroxyproline can enter into favorable interactions with water, which stabilizes the triple helix because the Y residues are solvent-accessible in the triple helix structure. The individual helices are also held together by an extensive network of amide-amide hydrogen bonds formed between the strands, each of which contributes approximately -2 kcal/mol to the overall free energy of the triple helix. The formation of the superhelix not only protects the critical glycine residues on the interior of the helix, but also protects the overall protein from proteolysis. Triple helix DNA and RNA are stabilized by many of the same forces that stabilize double-stranded DNA helices. With nucleotide bases oriented to the inside of the helix, closer to its axis, bases engage in hydrogen bonding with other bases. The bonded bases in the center exclude water, so the
hydrophobic effect The hydrophobic effect is the observed tendency of nonpolar substances to aggregate in an aqueous solution and exclude water molecules. The word hydrophobic literally means "water-fearing", and it describes the segregation of water and nonpolar ...
is particularly important in the stabilization of DNA triple helices.


Biological role


Proteins

Members of the collagen superfamily are major contributors to the extracellular matrix. The triple helical structure provides strength and stability to collagen fibers by providing great resistance to tensile stress. The rigidity of the collagen fibers is an important factor that can withstand most mechanical stress, making it an ideal protein for macromolecular transport and overall structural support throughout the body.


DNA

There are some oligonucleotide sequences, called triplet-forming
oligonucleotide Oligonucleotides are short DNA or RNA molecules, oligomers, that have a wide range of applications in genetic testing, research, and forensics. Commonly made in the laboratory by solid-phase chemical synthesis, these small bits of nucleic acids ...
s (TFOs) that can bind to form a triplex with a longer molecule of double-stranded DNA; TFOs can inactivate a gene or help to induce mutations. TFOs can only bind to certain sites in a larger molecule, so researchers must first determine whether a TFO can bind to the gene of interest. Twisted intercalating nucleic acid is sometimes used to improve this process.


RNA

In recent years, the biological function of triplex RNA has become more studied. Some roles include increasing stability, translation, influencing ligand binding, and catalysis. One example of ligand binding being influenced by a triple helix is in the SAM-II riboswitch where the triple helix creates a binding site that will uniquely accept ''S''-adenosylmethionine ( SAM). The ribonucleoprotein complex
telomerase Telomerase, also called terminal transferase, is a ribonucleoprotein that adds a species-dependent telomere repeat sequence to the 3' end of telomeres. A telomere is a region of repetitive sequences at each end of the chromosomes of most euk ...
, responsible for replicating the tail-ends of DNA (
telomere A telomere (; ) is a region of repetitive nucleotide sequences associated with specialized proteins at the ends of linear chromosomes. Although there are different architectures, telomeres, in a broad sense, are a widespread genetic feature mos ...
s) also contains triplex RNA believed to be necessary for proper telomerase functioning. The triple helix at the 3' end of the PAN and MALAT1 long-noncoding RNAs serves to stabilize the RNA by protecting the Poly(A) tail from deadenylation, which subsequently affect their functions in viral pathogenesis and multiple human cancers. Additionally, RNA triple helices can stabilize mRNAs by formation of a poly(A) tail 3'-end binding pocket.


References

{{Spirals Curves Geometric shapes Helices Protein structural motifs