Thermit welding
   HOME

TheInfoList



OR:

Exothermic welding, also known as exothermic bonding, thermite welding (TW), and thermit welding, is a
welding Welding is a fabrication process that joins materials, usually metals or thermoplastics, by using high heat to melt the parts together and allowing them to cool, causing fusion. Welding is distinct from lower temperature techniques such as b ...
process that employs molten metal to permanently join the conductors. The process employs an
exothermic reaction In thermochemistry, an exothermic reaction is a "reaction for which the overall standard enthalpy change Δ''H''⚬ is negative." Exothermic reactions usually release heat. The term is often confused with exergonic reaction, which IUPAC defines ...
of a
thermite Thermite () is a pyrotechnic composition of metal powder and metal oxide. When ignited by heat or chemical reaction, thermite undergoes an exothermic reduction-oxidation (redox) reaction. Most varieties are not explosive, but can create brie ...
composition to heat the metal, and requires no external source of heat or current. The chemical reaction that produces the heat is an
aluminothermic reaction Aluminothermic reactions are exothermic chemical reactions using aluminum as the reducing agent at high temperature. The process is industrially useful for production of alloys of iron. The most prominent example is the thermite reaction between ...
between
aluminium Aluminium (aluminum in American and Canadian English) is a chemical element with the symbol Al and atomic number 13. Aluminium has a density lower than those of other common metals, at approximately one third that of steel. It ha ...
powder and a metal oxide.


Overview

In exothermic welding, aluminium dust reduces the oxide of another
metal A metal (from ancient Greek, Greek μέταλλον ''métallon'', "mine, quarry, metal") is a material that, when freshly prepared, polished, or fractured, shows a lustrous appearance, and conducts electrical resistivity and conductivity, e ...
, most commonly
iron oxide Iron oxides are chemical compounds composed of iron and oxygen. Several iron oxides are recognized. All are black magnetic solids. Often they are non-stoichiometric. Oxyhydroxides are a related class of compounds, perhaps the best known of wh ...
, because aluminium is highly reactive. Iron(III) oxide is commonly used: :\mathrm The products are aluminium oxide, free elemental
iron Iron () is a chemical element with symbol Fe (from la, ferrum) and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, right in ...
, and a large amount of
heat In thermodynamics, heat is defined as the form of energy crossing the boundary of a thermodynamic system by virtue of a temperature difference across the boundary. A thermodynamic system does not ''contain'' heat. Nevertheless, the term is ...
. The reactants are commonly powdered and mixed with a binder to keep the material solid and prevent separation. Commonly the reacting composition is five parts
iron oxide Iron oxides are chemical compounds composed of iron and oxygen. Several iron oxides are recognized. All are black magnetic solids. Often they are non-stoichiometric. Oxyhydroxides are a related class of compounds, perhaps the best known of wh ...
red (rust) powder and three parts
aluminium Aluminium (aluminum in American and Canadian English) is a chemical element with the symbol Al and atomic number 13. Aluminium has a density lower than those of other common metals, at approximately one third that of steel. It ha ...
powder by weight, ignited at high temperatures. A strongly
exothermic In thermodynamics, an exothermic process () is a thermodynamic process or reaction that releases energy from the system to its surroundings, usually in the form of heat, but also in a form of light (e.g. a spark, flame, or flash), electricity ...
(heat-generating) reaction occurs that via reduction and oxidation produces a white hot mass of molten
iron Iron () is a chemical element with symbol Fe (from la, ferrum) and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, right in ...
and a
slag Slag is a by-product of smelting ( pyrometallurgical) ores and used metals. Broadly, it can be classified as ferrous (by-products of processing iron and steel), ferroalloy (by-product of ferroalloy production) or non-ferrous/base metals (by-p ...
of
refractory In materials science, a refractory material or refractory is a material that is resistant to decomposition by heat, pressure, or chemical attack, and retains strength and form at high temperatures. Refractories are polycrystalline, polyphase, ...
aluminium oxide. The molten iron is the actual welding material; the aluminium oxide is much less dense than the liquid iron and so floats to the top of the reaction, so the set-up for welding must take into account that the actual molten metal is at the bottom of the
crucible A crucible is a ceramic or metal container in which metals or other substances may be melted or subjected to very high temperatures. While crucibles were historically usually made from clay, they can be made from any material that withstands te ...
and covered by floating slag. Other metal oxides can be used, such as chromium oxide, to generate the given metal in its elemental form.
Copper Copper is a chemical element with the symbol Cu (from la, cuprum) and atomic number 29. It is a soft, malleable, and ductile metal with very high thermal and electrical conductivity. A freshly exposed surface of pure copper has a pink ...
thermite, using copper oxide, is used for creating electric joints: :\mathrm Thermite welding is widely used to weld railway rails. One of the first railroads to evaluate the use of thermite welding was the
Delaware and Hudson Railroad The Delaware and Hudson Railway (D&H) is a railroad that operates in the Northeastern United States. In 1991, after more than 150 years as an independent railroad, the D&H was purchased by the Canadian Pacific Railway (CP). CP operates D&H ...
in the United States in 1935 The weld quality of chemically pure thermite is low due to the low heat penetration into the joining metals and the very low
carbon Carbon () is a chemical element with the symbol C and atomic number 6. It is nonmetallic and tetravalent—its atom making four electrons available to form covalent chemical bonds. It belongs to group 14 of the periodic table. Carbon ma ...
and alloy content in the nearly pure molten iron. To obtain sound railroad welds, the ends of the rails being thermite welded are preheated with a torch to an orange heat, to ensure the molten steel is not chilled during the pour. Because the thermite reaction yields relatively pure iron, not the much stronger steel, some small pellets or rods of high-carbon alloying metal are included in the thermite mix; these alloying materials melt from the heat of the thermite reaction and mix into the weld metal. The alloying beads composition will vary, according to the rail alloy being welded. The reaction reaches very high temperatures, depending on the metal oxide used. The reactants are usually supplied in the form of powders, with the reaction triggered using a spark from a flint lighter. The
activation energy In chemistry and physics, activation energy is the minimum amount of energy that must be provided for compounds to result in a chemical reaction. The activation energy (''E''a) of a reaction is measured in joules per mole (J/mol), kilojoules p ...
for this reaction is very high however, and initiation requires either the use of a "booster" material such as powdered
magnesium Magnesium is a chemical element with the symbol Mg and atomic number 12. It is a shiny gray metal having a low density, low melting point and high chemical reactivity. Like the other alkaline earth metals (group 2 of the periodic ...
metal or a very hot flame source. The aluminium oxide
slag Slag is a by-product of smelting ( pyrometallurgical) ores and used metals. Broadly, it can be classified as ferrous (by-products of processing iron and steel), ferroalloy (by-product of ferroalloy production) or non-ferrous/base metals (by-p ...
that it produces is discarded. When welding copper conductors, the process employs a semi-permanent
graphite Graphite () is a crystalline form of the element carbon. It consists of stacked layers of graphene. Graphite occurs naturally and is the most stable form of carbon under standard conditions. Synthetic and natural graphite are consumed on la ...
crucible A crucible is a ceramic or metal container in which metals or other substances may be melted or subjected to very high temperatures. While crucibles were historically usually made from clay, they can be made from any material that withstands te ...
mould, in which the molten copper, produced by the reaction, flows through the mould and over and around the conductors to be welded, forming an electrically conductive weld between them. When the copper cools, the mould is either broken off or left in place. Alternatively, hand-held graphite crucibles can be used. The advantages of these crucibles include portability, lower cost (because they can be reused), and flexibility, especially in field applications.


Properties

An exothermic weld has higher mechanical strength than other forms of weld, and excellent corrosion resistance It is also highly stable when subject to repeated short-circuit pulses, and does not suffer from increased electrical resistance over the lifetime of the installation. However, the process is costly relative to other welding processes, requires a supply of replaceable moulds, suffers from a lack of repeatability, and can be impeded by wet conditions or bad weather (when performed outdoors).


Applications

Exothermic welding is usually used for welding copper conductors but is suitable for welding a wide range of metals, including
stainless steel Stainless steel is an alloy of iron that is resistant to rusting and corrosion. It contains at least 11% chromium and may contain elements such as carbon, other nonmetals and metals to obtain other desired properties. Stainless steel's r ...
,
cast iron Cast iron is a class of iron– carbon alloys with a carbon content more than 2%. Its usefulness derives from its relatively low melting temperature. The alloy constituents affect its color when fractured: white cast iron has carbide impuri ...
, common
steel Steel is an alloy made up of iron with added carbon to improve its strength and fracture resistance compared to other forms of iron. Many other elements may be present or added. Stainless steels that are corrosion- and oxidation-resistan ...
,
brass Brass is an alloy of copper (Cu) and zinc (Zn), in proportions which can be varied to achieve different mechanical, electrical, and chemical properties. It is a substitutional alloy: atoms of the two constituents may replace each other wi ...
,
bronze Bronze is an alloy consisting primarily of copper, commonly with about 12–12.5% tin and often with the addition of other metals (including aluminium, manganese, nickel, or zinc) and sometimes non-metals, such as phosphorus, or metalloids suc ...
, and
Monel Monel is a group of alloys of nickel (from 52 to 67%) and copper, with small amounts of iron, manganese, carbon, and silicon. Monel is not a cupronickel alloy because it has less than 60% copper. Stronger than pure nickel, Monel alloys are res ...
. It is especially useful for joining dissimilar metals. The process is marketed under a variety of names such as AIWeld, American Rail Weld, AmiableWeld, Ardo Weld, ERICO Cadweld, FurseWeld, Harger Ultrashot, Quikweld
StaticWeld
Techweld, Tectoweld, TerraWeld, Thermoweld and Ultraweld. Because of the good electrical conductivity and high stability in the face of short-circuit pulses, exothermic welds are one of the options specified by §250.7 of the United States
National Electrical Code The National Electrical Code (NEC), or NFPA 70, is a regionally adoptable standard for the safe installation of electrical wiring and equipment in the United States. It is part of the National Fire Code series published by the National Fire Prote ...
for grounding conductors and
bonding jumper A bonding jumper is a reliable conductor to ensure the required electrical conductivity between metal raceways required to be electrically connected. Bonding "Bonding" is a method by which all electrically conductive materials and metallic surface ...
s. It is the preferred method of bonding, and indeed it is the only acceptable means of bonding copper to
galvanized Galvanization or galvanizing ( also spelled galvanisation or galvanising) is the process of applying a protective zinc coating to steel or iron, to prevent rusting. The most common method is hot-dip galvanizing, in which the parts are submerged ...
cable. The NEC does not require such exothermically welded connections to be listed or labelled, but some engineering specifications require that completed exothermic welds be examined using
X-ray An X-ray, or, much less commonly, X-radiation, is a penetrating form of high-energy electromagnetic radiation. Most X-rays have a wavelength ranging from 10 picometers to 10  nanometers, corresponding to frequencies in the range 30&nb ...
equipment.


Rail welding


History

Modern thermite rail welding was first developed by
Hans Goldschmidt Johannes Wilhelm "Hans" Goldschmidt (18 January 1861 – 21 May 1923) was a German chemist notable as the discoverer of the Thermite reaction. He was also co-owner of the Chemische Fabrik Th. Goldschmidt, as of 1911 Th. Goldschmidt AG (later to be ...
in the mid-1890s as another application for the thermite reaction which he was initially exploring for the use of producing high-purity chromium and manganese. The first rail line was welded using the process in
Essen, Germany Essen (; Latin: ''Assindia'') is the central and, after Dortmund, second-largest city of the Ruhr, the largest urban area in Germany. Its population of makes it the fourth-largest city of North Rhine-Westphalia after Cologne, Düsseldorf and Dor ...
in 1899, and thermite welded rails gained popularity as they had the advantage of greater reliability with the additional wear placed on rails by new electric and high speed rail systems. Some of the earliest adopters of the process were the cities of
Dresden Dresden (, ; Upper Saxon: ''Dräsdn''; wen, label= Upper Sorbian, Drježdźany) is the capital city of the German state of Saxony and its second most populous city, after Leipzig. It is the 12th most populous city of Germany, the fourth ...
,
Leeds Leeds () is a city and the administrative centre of the City of Leeds district in West Yorkshire, England. It is built around the River Aire and is in the eastern foothills of the Pennines. It is also the third-largest settlement (by popul ...
, and
Singapore Singapore (), officially the Republic of Singapore, is a sovereign island country and city-state in maritime Southeast Asia. It lies about one degree of latitude () north of the equator, off the southern tip of the Malay Peninsula, bor ...
. In 1904 Goldschmidt established his eponymous Goldschmidt Thermit Company (known by that name today) in New York City to bring the practice to railways in North America. In 1904, George E. Pellissier, an engineering student at
Worcester Polytechnic Institute Worcester Polytechnic Institute (WPI) is a Private university, private research university in Worcester, Massachusetts. Founded in 1865 in Worcester, WPI was one of the United States' first engineering and technology universities and now has 14 ac ...
who had been following Goldschmidt's work, reached out to the new company as well as the
Holyoke Street Railway The Holyoke Street Railway (HSR) was an interurban streetcar and bus system operating in Holyoke, Massachusetts as well as surrounding communities with connections in Amherst, Belchertown, Chicopee, Easthampton, Granby, Northampton, Pelham, ...
in Massachusetts. Pellissier oversaw the first installation of track in the United States using this process on August 8, 1904, and went on to improve upon it further for both the railway and Goldschmidt's company as an engineer and superintendent, including early developments in continuous welded rail processes that allowed the entirety of each rail to be joined rather than the foot and web alone. Although not all rail welds are completed using the thermite process, it still remains a standard operating procedure throughout the world.


Process

Typically, the ends of the rails are cleaned, aligned flat and true, and spaced apart . This gap between rail ends for welding is to ensure consistent results in the pouring of the molten steel into the weld mold. In the event of a welding failure, the rail ends can be cropped to a gap, removing the melted and damaged rail ends, and a new weld attempted with a special mould and larger thermite charge. A two or three piece hardened sand mould is clamped around the rail ends, and a torch of suitable heat capacity is used to preheat the ends of the rail and the interior of the mould. The proper amount of thermite with alloying metal is placed in a refractory crucible, and when the rails have reached a sufficient temperature, the thermite is ignited and allowed to react to completion (allowing time for any alloying metal to fully melt and mix, yielding the desired molten steel or alloy). The reaction crucible is then tapped at the bottom. Modern crucibles have a self-tapping thimble in the pouring nozzle. The molten steel flows into the mould, fusing with the rail ends and forming the weld. The slag, being lighter than the steel flows last from the crucible and overflows the mould into a steel catch basin, to be disposed of after cooling. The entire setup is allowed to cool. The mould is removed and the weld is cleaned by hot chiselling and grinding to produce a smooth joint. Typical time from start of the work until a train can run over the rail is approximately 45 minutes to more than an hour, depending on the rail size and ambient temperature. In any case, the rail steel must be cooled to less than before it can sustain the weight of rail locomotives. When a thermite process is used for
track circuits A track circuit is an electrical device used to prove the absence of a train on rail tracks to signallers and control relevant signals. An alternative to track circuits are axle counters. Principles and operation The basic principle behind ...
– the bonding of wires to the rails with a
copper alloy Copper alloys are metal alloys that have copper as their principal component. They have high resistance against corrosion. The best known traditional types are bronze, where tin is a significant addition, and brass, using zinc instead. Both of t ...
, a
graphite Graphite () is a crystalline form of the element carbon. It consists of stacked layers of graphene. Graphite occurs naturally and is the most stable form of carbon under standard conditions. Synthetic and natural graphite are consumed on la ...
mould is used. The graphite mould is reusable many times, because the copper alloy is not as hot as the steel alloys used in rail welding. In signal bonding, the volume of molten copper is quite small, approximately and the mould is lightly clamped to the side of the rail, also holding a signal wire in place. In rail welding, the weld charge can weigh up to . The hardened sand mould is heavy and bulky, must be securely clamped in a very specific position and then subjected to intense heat for several minutes before firing the charge. When rail is welded into long strings, the longitudinal expansion and contraction of steel must be taken into account. British practice sometimes uses a sliding joint of some sort at the end of long runs of continuously welded rail, to allow some movement, although by using a heavy
concrete sleeper A concrete sleeper (British English) or concrete tie (American English) is a type of railway sleeper or railroad tie made out of steel reinforced concrete. History In 1877, Joseph Monier, a French gardener, suggested that concrete reinforced ...
and an extra amount of ballast at the sleeper ends, the track, which will be prestressed according to the ambient temperature at the time of its installation, will develop compressive stress in hot ambient temperature, or tensile stress in cold ambient temperature, its strong attachment to the heavy sleepers preventing
sun kink In structural engineering, buckling is the sudden change in shape (deformation) of a structural component under load, such as the bowing of a column under compression or the wrinkling of a plate under shear. If a structure is subjected to a g ...
(
buckling In structural engineering, buckling is the sudden change in shape ( deformation) of a structural component under load, such as the bowing of a column under compression or the wrinkling of a plate under shear. If a structure is subjected to a ...
) or other deformation. Current practice is to use welded rails throughout on high speed lines, and expansion joints are kept to a minimum, often only to protect junctions and crossings from excessive stress. American practice appears to be very similar, a straightforward physical restraint of the rail. The rail is prestressed, or considered "stress neutral" at some particular ambient temperature. This "neutral" temperature will vary according to local climate conditions, taking into account lowest winter and warmest summer temperatures. The rail is physically secured to the ties or sleepers with rail anchors, or anti-creepers. If the track ballast is good and clean and the ties are in good condition, and the
track geometry Track geometry is concerned with the properties and relations of points, lines, curves, and surfaces in the three-dimensional positioning of railroad track. The term is also applied to measurements used in design, construction and maintenance of t ...
is good, then the welded rail will withstand ambient temperature swings normal to the region.


Remote welding

''Remote exothermic welding'' is a type of exothermic welding process for joining two electrical conductors from a distance. The process reduces the inherent risks associated with exothermic welding and is used in installations that require a welding operator to permanently join conductors a safe distance from the superheated
copper alloy Copper alloys are metal alloys that have copper as their principal component. They have high resistance against corrosion. The best known traditional types are bronze, where tin is a significant addition, and brass, using zinc instead. Both of t ...
. The process incorporates either an igniter for use with standard graphite molds or a consumable sealed drop-in weld metal cartridge, semi-permanent graphite crucible
mold A mold () or mould () is one of the structures certain fungi can form. The dust-like, colored appearance of molds is due to the formation of spores containing fungal secondary metabolites. The spores are the dispersal units of the fungi. Not ...
, and an ignition source that tethers to the cartridge with a cable that provides the safe remote ignition.


See also

*
Rail lengths A railway track (British English and UIC terminology) or railroad track (American English), also known as permanent way or simply track, is the structure on a railway or railroad consisting of the rails, fasteners, railroad ties (sleeper ...


References


External links


Exothermic Welding Powder - Learn how Exothermic Welding is done
AmiableWeld {{DEFAULTSORT:Exothermic Welding History of Cleveland Welding