In differential geometry, a tensor density or relative tensor is a generalization of the tensor field concept. A tensor density transforms as a tensor field when passing from one coordinate system to another (see tensor field), except that it is additionally multiplied or weighted by a power W of the Jacobian determinant of the coordinate transition function or its absolute value. A distinction is made among (authentic) tensor densities, pseudotensor densities, even tensor densities and odd tensor densities. Sometimes tensor densities with a negative weight W are called tensor capacity.[1][2][3] A tensor density can also be regarded as a section of the tensor product of a tensor bundle with a density bundle.


In physics and related fields, it is often useful to work with the components of an algebraic object rather than the object itself. An example would be decomposing a vector into a sum of basis vectors weighted by some coefficients such as