HOME
The Info List - Subduction


--- Advertisement ---



Subduction
Subduction
is a geological process that takes place at convergent boundaries of tectonic plates where one plate moves under another and is forced or sinks due to gravity into the mantle. Regions where this process occurs are known as subduction zones. Rates of subduction are typically in centimeters per year, with the average rate of convergence being approximately two to eight centimeters per year along most plate boundaries.[1] Plates include both oceanic crust and continental crust. Stable subduction zones involve the oceanic lithosphere of one plate sliding beneath the continental or oceanic lithosphere of another plate due to the higher density of the oceanic lithosphere. That is, the subducted lithosphere is always oceanic while the overriding lithosphere may or may not be oceanic. Subduction
Subduction
zones are sites that usually have a high rate of volcanism and earthquakes.[2] Additionally, subduction zones develop belts of deformation[3][better source needed] in the overriding plate's crust in a processes called orogeny part of which leads to mountain building.

Contents

1 General description 2 Theory on origin 3 Effects

3.1 Metamorphism 3.2 Volcanic activity 3.3 Earthquakes and tsunamis 3.4 Orogeny

4 Subduction
Subduction
angle 5 Importance 6 See also 7 References 8 External links

General description[edit] Subduction
Subduction
zones are sites of convective downwelling of Earth's lithosphere (the crust plus the top non-convecting portion of the upper mantle). Subduction
Subduction
zones exist at convergent plate boundaries where one plate of oceanic lithosphere converges with another plate. The descending slab, the subducting plate, is over-ridden by the leading edge of the other plate. The slab sinks at an angle of approximately twenty-five to forty-five degrees to Earth's surface. This sinking is driven by the temperature difference between the subducting oceanic lithosphere and the surrounding mantle asthenosphere, as the colder oceanic lithosphere is, on average, denser. At a depth of approximately 80–120 kilometers, the basalt of the oceanic crust is converted to a metamorphic rock called eclogite. At that point, the density of the oceanic crust increases and provides additional negative buoyancy (downwards force). It is at subduction zones that Earth's lithosphere, oceanic crust, sedimentary layers and some trapped water are recycled into the deep mantle. Earth is so far the only planet where subduction is known to occur. Subduction
Subduction
is the driving force behind plate tectonics, and without it, plate tectonics could not occur.

Subduction
Subduction
zones dive down into the mantle beneath 55,000 kilometers of convergent plate margins (Lallemand, 1999), almost equal to the cumulative 60,000 kilometers of mid-ocean ridges. Subduction
Subduction
zones burrow deeply but are imperfectly camouflaged, and geophysics and geochemistry can be used to study them. Not surprisingly, the shallowest portions of subduction zones are known best. Subduction zones are strongly asymmetric for the first several hundred kilometers of their descent. They start to go down at oceanic trenches. Their descents are marked by inclined zones of earthquakes that dip away from the trench beneath the volcanoes and extend down to the 660-kilometer discontinuity. Subduction
Subduction
zones are defined by the inclined array of earthquakes known as the Wadati–Benioff zone
Wadati–Benioff zone
after the two scientists who first identified this distinctive aspect. Subduction
Subduction
zone earthquakes occur at greater depths (up to 600 km) than elsewhere on Earth (typically <20 km depth); such deep earthquakes may be driven by deep phase transformations, thermal runaway, or dehydration embrittlement.[4][5] The subducting basalt and sediment are normally rich in hydrous minerals and clays. Additionally, large quantities of water are introduced into cracks and fractures created as the subducting slab bends downward.[6] During the transition from basalt to eclogite, these hydrous materials break down, producing copious quantities of water, which at such great pressure and temperature exists as a supercritical fluid. The supercritical water, which is hot and more buoyant than the surrounding rock, rises into the overlying mantle where it lowers the pressure in (and thus the melting temperature of) the mantle rock to the point of actual melting, generating magma. The magmas, in turn, rise (and become labeled diapirs) because they are less dense than the rocks of the mantle. The mantle-derived magmas (which are basaltic in composition) can continue to rise, ultimately to Earth's surface, resulting in a volcanic eruption. The chemical composition of the erupting lava depends upon the degree to which the mantle-derived basalt interacts with (melts) Earth's crust and/or undergoes fractional crystallization. Above subduction zones, volcanoes exist in long chains called volcanic arcs. Volcanoes that exist along arcs tend to produce dangerous eruptions because they are rich in water (from the slab and sediments) and tend to be extremely explosive. Krakatoa, Nevado del Ruiz, and Mount Vesuvius
Mount Vesuvius
are all examples of arc volcanoes. Arcs are also known to be associated with precious metals such as gold, silver and copper believed to be carried by water and concentrated in and around their host volcanoes in rock called "ore". Theory on origin[edit]

This section needs expansion. You can help by adding to it. (September 2015)

Although the process of subduction as it occurs today is fairly well understood, its origin remains a matter of discussion and continuing study. Subduction
Subduction
initiation can occur spontaneously if denser oceanic lithosphere is able to founder and sink beneath adjacent oceanic or continental lithosphere; alternatively, existing plate motions can induce new subduction zones by forcing oceanic lithosphere to rupture and sink into the asthenosphere.[7] Both models can eventually yield self-sustaining subduction zones, as oceanic crust is metamorphosed at great depth and becomes denser than the surrounding mantle rocks. Results from numerical models generally favor induced subduction initiation for most modern subduction zones,[8][9] which is supported by geologic studies,[10][11] but other analogue modeling shows the possibility of spontaneous subduction from inherent density differences between two plates at passive margins,[12][13] and observations from the Izu-Bonin-Mariana subduction system are compatible with spontaneous subduction nucleation.[14][15] Furthermore, subduction is likely to have spontaneously initiated at some point in Earth's history, as induced subduction nucleation requires existing plate motions, though an unorthodox proposal by A. Yin suggests that meteorite impacts may have contributed to subduction initiation on early Earth.[16] Geophysicist
Geophysicist
Don L. Anderson
Don L. Anderson
has hypothesized that plate tectonics could not happen without the calcium carbonate laid down by bioforms at the edges of subduction zones. The massive weight of these sediments could be softening the underlying rocks, making them pliable enough to plunge.[17] However, considering that some refractory minerals used for dating early Earth, such as zircon, are typically generated in subduction zones and associated with granites and pegmatites, some of these early dates may have preceded significant biological activity on Earth.[citation needed] Effects[edit] Metamorphism[edit] Main article: Subduction
Subduction
zone metamorphism Volcanic activity[edit] Main article: Volcanic arc

Oceanic plates are subducted creating oceanic trenches.

Volcanoes that occur above subduction zones, such as Mount St. Helens, Mount Etna
Mount Etna
and Mount Fuji, lie at approximately one hundred kilometers from the trench in arcuate chains, hence the term volcanic arc. Two kinds of arcs are generally observed on Earth: island arcs that form on oceanic lithosphere (for example, the Mariana and the Tonga
Tonga
island arcs), and continental arcs such as the Cascade Volcanic Arc, that form along the coast of continents. Island arcs
Island arcs
are produced by the subduction of oceanic lithosphere beneath another oceanic lithosphere (ocean-ocean subduction) while continental arcs formed during subduction of oceanic lithosphere beneath a continental lithosphere (ocean-continent subduction). An example of a volcanic arc having both island and continental arc sections is found behind the Aleutian Trench subduction zone in Alaska. The arc magmatism occurs one hundred to two hundred kilometers from the trench and approximately one hundred kilometers above the subducting slab. This depth of arc magma generation is the consequence of the interaction between hydrous fluids, released from the subducting slab, and the arc mantle wedge that is hot enough to melt with the addition of water. It has also been suggested that the mixing of fluids from a subducted tectonic plate and melted sediment is already occurring at the top of the slab before any mixing with the mantle takes place.[18] Arcs produce about 25% of the total volume of magma produced each year on Earth (approximately thirty to thirty-five cubic kilometers), much less than the volume produced at mid-ocean ridges, and they contribute to the formation of new continental crust. Arc volcanism has the greatest impact on humans, because many arc volcanoes lie above sea level and erupt violently. Aerosols injected into the stratosphere during violent eruptions can cause rapid cooling of Earth's climate and affect air travel. Earthquakes and tsunamis[edit] Main article: Megathrust earthquake The strains caused by plate convergence in subduction zones cause at least three different types of earthquakes. Earthquakes mainly propagate in the cold subducting slab and define the Wadati–Benioff zone. Seismicity shows that the slab can be tracked down to the upper mantle/lower mantle boundary (approximately six hundred kilometer depth). Nine of the ten largest earthquakes of the last 100 years were subduction zone events, which included the 1960 Great Chilean earthquake, which, at M 9.5, was the largest earthquake ever recorded; the 2004 Indian Ocean
Ocean
earthquake and tsunami; and the 2011 Tōhoku earthquake and tsunami. The subduction of cold oceanic crust into the mantle depresses the local geothermal gradient and causes a larger portion of Earth to deform in a more brittle fashion than it would in a normal geothermal gradient setting. Because earthquakes can occur only when a rock is deforming in a brittle fashion, subduction zones can cause large earthquakes. If such a quake causes rapid deformation of the sea floor, there is potential for tsunamis, such as the earthquake caused by subduction of the Indo-Australian Plate under the Euro-Asian Plate on December 26, 2004 that devastated the areas around the Indian Ocean. Small tremors which cause small, nondamaging tsunamis, also occur frequently. A study published in 2016 suggested a new parameter to determine a subduction zone's ability to generate mega-earthquakes.[19] By examining subduction zone geometry and comparing the degree of curvature of the subducting plates in great historical earthquakes such as the 2004 Sumatra-Andaman and the 2011 Tōhoku earthquake, Bletery et al. determined that the magnitude of earthquakes in subduction zones is inversely proportional to the degree of the fault's curvature, meaning that "the flatter the contact between the two plates, the more likely it is that mega-earthquakes will occur."[20] Outer rise earthquakes occur when normal faults oceanward of the subduction zone are activated by flexture of the plate as it bends[21] into the subduction zone. The 2009 Samoa earthquake is an example of this type of event. Displacement of the sea floor caused by this event generated a six-meter tsunami in nearby Samoa. Anomalously deep events are a characteristic of subduction zones, which produce the deepest quakes on the planet. Earthquakes are generally restricted to the shallow, brittle parts of the crust, generally at depths of less than twenty kilometers. However, in subduction zones, quakes occur at depths as great as seven hundred kilometers. These quakes define inclined zones of seismicity known as Wadati–Benioff zones, after the scientists who discovered them, which trace the descending lithosphere. Seismic tomography
Seismic tomography
has helped detect subducted lithosphere, slabs, deep in the mantle where there are no earthquakes. About 100 slabs have been described in terms of depth and their timing and location of subduction.[22] Some subducted slabs seem to have difficulty to penetrate the major discontinuity in the mantle, marking the boundary between the upper mantle and lower mantle, that lies at a depth of about 670 kilometers. Other subducted oceanic plates can penetrate all the way to the core-mantle boundary. The great seismic discontinuities in the mantle, at 410 and 670 kilometer depth, are disrupted by the descent of cold slabs in deep subduction zones. Orogeny[edit] Main article: Orogeny

This section needs expansion. You can help by adding to it. (June 2010)

Orogeny
Orogeny
is the process of mountain building. Subducting plates can lead to orogeny by bringing oceanic islands, oceanic plateaus, and sediments to convergent margins. The material often does not subduct with the rest of the plate but instead is accreted (scraped off) to the continent resulting in exotic terranes. The collision of this oceanic material causes crustal thickening and mountain-building. The accreted material is often referred to as an accretionary wedge, or prism. These accretionary wedges can be identified by ophiolites (uplifted ocean crust consisting of sediments, pillow basalts, sheeted dykes, gabbro, and peridotite).[23] This accretion process is thought by many geologists to be the reason for the crustal growth of western North America and of the uplift that produced the Rocky Mountains. Subduction
Subduction
may also cause orogeny without bringing in oceanic material that collides with the overriding continent. When the subducting plate subducts at a shallow angle underneath a continent (something called "flat-slab subduction"), the subducting plate may have enough traction on the bottom of the continental plate to cause the upper plate to contract leading to folding, faulting, crustal thickening and mountain building. This flat-slab subduction process is thought to be one of the main causes of mountain building and deformation in South America. The processes described above allow subduction to continue while mountain building happens progressively, which is in contrast to continent-continent collision orogeny, which often leads to the termination of subduction. Subduction
Subduction
angle[edit] Subduction
Subduction
typically occurs at a moderately steep angle right at the point of the convergent plate boundary. However, anomalous shallower angles of subduction are known to exist as well some that are extremely steep.

Flat-slab subduction (<30°): occurs when subducting lithosphere, called a slab, subducts horizontally or nearly horizontally. The flat slab can extend for hundreds of kilometers and can even extend to over a thousand. That is abnormal, as the dense slab typically sinks at a much steeper angle directly at the subduction zone. Because subduction of slabs to depth is necessary to drive subduction zone volcanism (through the destabilization and dewatering of minerals and the resultant flux melting of the mantle wedge), flat-slab subduction can be invoked to explain volcanic gaps. Flat-slab subduction is ongoing beneath part of the Andes
Andes
causing segmentation of the Andean Volcanic Belt into four zones. The flat-slab subduction in northern Peru and Norte Chico region of Chile is believed to be the result of the subduction of two buoyant aseismic ridges, the Nazca Ridge and the Juan Fernández Ridge
Juan Fernández Ridge
respectively. Around Taitao Peninsula
Taitao Peninsula
flat-slab subduction is attributed to the subduction of the Chile Rise, a spreading ridge. The Laramide Orogeny
Orogeny
in the Rocky Mountains
Rocky Mountains
of United States is attributed to flat-slab subduction.[24] Then, a broad volcanic gap appeared at the southwestern margin of North America, and deformation occurred much farther inland; it was during this time that the basement-cored mountain ranges of Colorado, Utah, Wyoming, South Dakota, and New Mexico came into being. The most massive subduction zone earthquakes, so-called "megaquakes", have been found to occur in flat-slab subduction zones.[25] Steep-angle subduction (>70°): occurs in subduction zones where Earth's oceanic crust and lithosphere are old and thick and have, therefore, lost buoyancy. The steepest dipping subduction zone lies in the Mariana Trench, which is also where the oceanic crust, of Jurassic age, is the oldest on Earth exempting ophiolites. Steep-angle subduction is, in contrast to flat-slab subduction, associated with back-arc extension[26] of crust making volcanic arcs and fragments of continental crust wander away from continents over geological times leaving behind a marginal sea.

Importance[edit] Subduction
Subduction
zones are important for several reasons[citation needed]:

Subduction
Subduction
Zone Physics: Sinking of the oceanic lithosphere (sediments, crust, mantle), by contrast of density between the cold and old lithosphere and the hot asthenospheric mantle wedge, is the strongest force (but not the only one) needed to drive plate motion and is the dominant mode of mantle convection. Subduction
Subduction
Zone Chemistry: The subducted sediments and crust dehydrate and release water-rich (aqueous) fluids into the overlying mantle, causing mantle melting and fractionation of elements between surface and deep mantle reservoirs, producing island arcs and continental crust. Subduction
Subduction
zones drag down subducted oceanic sediments, oceanic crust, and mantle lithosphere that interact with the hot asthenospheric mantle from the over-riding plate to produce calc-alkaline series melts, ore deposits, and continental crust. Subduction
Subduction
zones pose significant threats to lives, property, economic vitality, cultural and natural resources, as well as quality of life. The tremendous magnitudes of earthquakes or volcanic eruptions can also have knock-on effects with global impact.[27]

Subduction
Subduction
zones have also been considered as possible disposal sites for nuclear waste in which the action of subduction itself would carry the material into the planetary mantle, safely away from any possible influence on humanity or the surface environment. However, that method of disposal is currently banned by international agreement.[28][29][30][31] Furthermore, plate subduction zones are associated with very large megathrust earthquakes, making the effects on using any specific site for disposal unpredictable and possibly adverse to the safety of longterm disposal.[29] See also[edit]

Back-arc
Back-arc
basin Divergent double subduction List of tectonic plate interactions Obduction Oceanic trench Paired metamorphic belts Slab window

References[edit]

This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed. (May 2011) (Learn how and when to remove this template message)

^ Defant, M. J. (1998). Voyage of Discovery: From the Big Bang to the Ice Age. Mancorp. p. 325. ISBN 0-931541-61-1.  ^ Martínez-López, M.R., Mendoza, C., (2016). "Acoplamiento sismogénico en la zona de subducción de Michoacán-Colima-Jalisco,México" (PDF). Boletín de la Sociedad Geológica Mexicana (in Spanish). 68 (2): 199–214. CS1 maint: Multiple names: authors list (link) ^ "Orogenese". Store norske leksikon
Store norske leksikon
(in Norwegian). February 14, 2009. Retrieved July 2, 2014.  ^ Frolich, C. (1989). "The Nature of Deep Focus Earthquakes". Annual Review of Earth and Planetary Sciences. 17: 227–254. doi:10.1146/annurev.ea.17.050189.001303.  ^ Hacker, B.; et al. (2003). " Subduction
Subduction
factory 2. Are intermediate-depth earthquakes in subducting slabs linked to metamorphic dehydration reactions?" (PDF). Journal of Geophysical Research. 108. Bibcode:2003JGRB..108.2030H. doi:10.1029/2001JB001129. CS1 maint: Explicit use of et al. (link) ^ Fujie, Gou; et al. (2013). "Systematic changes in the incoming plate structure at the Kuril trench". Geophysical Research Letters. 40: 88–93. Bibcode:2013GeoRL..40...88F. doi:10.1029/2012GL054340. CS1 maint: Explicit use of et al. (link) ^ Stern, R.J. (2004). " Subduction
Subduction
initiation: spontaneous and induced". Earth and Planetary Science Letters. 226: 275–292. Bibcode:2004E&PSL.226..275.. doi:10.1016/j.epsl.2004.08.007.  ^ Hall, C.E.; et al. (2003). "Catastrophic initiation of subduction following forced convergence across fracture zones". Earth and Planetary Science Letters. 212: 15–30. Bibcode:2003E&PSL.212...15H. doi:10.1016/S0012-821X(03)00242-5. CS1 maint: Explicit use of et al. (link) ^ Gurnis, M.; et al. (2004). "Evolving force balance during incipient subduction". Geochemistry, Geophysics, Geosystems. 5. Bibcode:2004GGG.....5.7001G. doi:10.1029/2003GC000681. CS1 maint: Explicit use of et al. (link) ^ Keenan, Timothy E.; Encarnación, John; Buchwaldt, Robert; Fernandez, Dan; Mattinson, James; Rasoazanamparany, Christine; Luetkemeyer, P. Benjamin. "Rapid conversion of an oceanic spreading center to a subduction zone inferred from high-precision geochronology". PNAS. 113: E7359–E7366. doi:10.1073/pnas.1609999113. PMC 5127376 . PMID 27821756.  ^ House, M. A.; Gurnis, M.; Kamp, P. J. J.; Sutherland, R. (September 2002). "Uplift in the Fiordland Region, New Zealand: Implications for Incipient Subduction". Science. 297 (5589): 2038–2041. doi:10.1126/science.1075328. PMID 12242439.  ^ Mart, Y., Aharonov, E., Mulugeta, G., Ryan, W.B.F., Tentler, T., Goren, L. (2005). "Analog modeling of the initiation of subduction". Geophys. J. Int. 160 (3): 1081–1091. Bibcode:2005GeoJI.160.1081M. doi:10.1111/j.1365-246X.2005.02544.x. CS1 maint: Multiple names: authors list (link) ^ Goren, L., E. Aharonov, G. Mulugeta, H. A. Koyi, and Y. Mart (2008). "Ductile Deformation of Passive Margins: A New Mechanism for Subduction
Subduction
Initiation". J. Geophys. Res. 113: B08411. Bibcode:2008JGRB..11308411G. doi:10.1029/2005JB004179. CS1 maint: Multiple names: authors list (link) ^ Stern, R.J.; Bloomer, S.H. (1992). " Subduction
Subduction
zone infancy: examples from the Eocene Izu-Bonin-Mariana and Jurassic
Jurassic
California arcs". Geological Society of America Bulletin. doi:10.1130/0016-7606.  ^ Arculus, R.J.; et al. (2015). "A record of spontaneous subduction initiation in the Izu–Bonin–Mariana arc". Nature Geoscience. 8: 728–733. doi:10.1038/ngeo2515. CS1 maint: Explicit use of et al. (link) ^ Yin, A. (2012). "An episodic slab-rollback model for the origin of the Tharsis rise on Mars: Implications for initiation of local plate subduction and final unification of a kinematically linked global plate-tectonic network on Earth". Lithosphere. 4: 553–593. doi:10.1130/L195.1.  ^ Harding, Stephan. Animate Eart. Science, Intuition and Gaia. Chelsea Green Publishing, 2006, p. 114. ISBN 1-933392-29-0 ^ "Volcanic arcs form by deep melting of rock mixtures: Study changes our understanding of processes inside subduction zones". ScienceDaily. Retrieved 2017-06-21.  ^ Bletery, Quentin; Thomas, Amanda M.; Rempel, Alan W.; Karlstrom, Leif; Sladen, Anthony; Barros, Louis De (2016-11-25). "Mega-earthquakes rupture flat megathrusts". Science. 354 (6315): 1027–1031. doi:10.1126/science.aag0482. ISSN 0036-8075. PMID 27885027.  ^ " Subduction
Subduction
zone geometry: Mega-earthquake risk indicator". ScienceDaily. Retrieved 2017-06-21.  ^ Garcia-Castellanos, D., M. Torné & M. Fernàndez (2000). "Slab pull effects from a flexural analysis of the Tonga
Tonga
and Kermadec Trenches (Pacific Plate)". Geophys. J. Int. 141: 479–485. Bibcode:2000GeoJI.141..479G. doi:10.1046/j.1365-246x.2000.00096.x. CS1 maint: Uses authors parameter (link) ^ "Atlas of the Underworld Van der Meer, D.G., van Hinsbergen, D.J.J., and Spakman, W., 2017, Atlas of the Underworld: slab remnants in the mantle, their sinking history, and a new outlook on lower mantle viscosity, Tectonophysics". www.atlas-of-the-underworld.org. Retrieved 2017-12-02.  ^ Encyclopedia of Environmental Change. Ed. John A. Matthews. Vol. 1. Los Angeles: SAGE Reference, 2014 ^ W. P. Schellart; D. R. Stegman; R. J. Farrington; J. Freeman & L. Moresi (16 July 2010). "Cenozoic Tectonics of Western North America Controlled by Evolving Width of Farallon Slab". Science. 329 (5989): 316–319. Bibcode:2010Sci...329..316S. doi:10.1126/science.1190366. PMID 20647465.  ^ Fault curvature may control where big quakes occur, Eurekalert 24-NOV-2016 ^ Lallemand, Serge; Heuret, Arnauld; Boutelier, David (8 September 2005). "On the relationships between slab dip, back-arc stress, upper plate absolute motion, and crustal nature in subduction zones" (PDF). Geochemistry
Geochemistry
Geophysics
Geophysics
Geosystems. 6 (9): Q09006. Bibcode:2005GGG.....609006L. doi:10.1029/2005GC000917.  ^ "USGS publishes a new blueprint that can help make subduction zone areas more resilient". www.usgs.gov. Retrieved 2017-06-21.  ^ Hafemeister, David W. (2007). Physics of societal issues: calculations on national security, environment, and energy. Berlin: Springer Science & Business Media. p. 187. ISBN 0-387-95560-7.  ^ a b Kingsley, Marvin G.; Rogers, Kenneth H. (2007). Calculated risks: highly radioactive waste and homeland security. Aldershot, Hants, England: Ashgate. pp. 75–76. ISBN 0-7546-7133-X.  ^ "Dumping and Loss overview". Oceans in the Nuclear Age. Archived from the original on June 5, 2011. Retrieved 18 September 2010.  ^ "Storage and Disposal Options. World Nuclear Organization (date unknown)". Archived from the original on July 19, 2011. Retrieved February 8, 2012. 

Stern, R.J. (2002). " Subduction
Subduction
zones". Reviews of Geophysics. 40 (4): 1012. Bibcode:2002RvGeo..40.1012S. doi:10.1029/2001RG000108.  Stern, R.J. (1998). "A Subduction
Subduction
Primer for Instructors of Introductory Geology Courses and Authors of Introductory Geology Textbooks". J. Geoscience Education. 46: 221–228. doi:10.5408/1089-9995-46.3.221.  Tatsumi, Y. (2005). "The Subduction
Subduction
Factory: How it operates on Earth". GSA Today. 15 (7): 4–10. doi:10.1130/1052-5173(2005)015[4:TSFHIO]2.0.CO;2. 

Lallemand, S., La Subduction
Subduction
Oceanique, Gordon and Breach, Newark, N. J., 1999.

External links[edit]

Wikimedia Commons has media related to Subduction.

The Wikibook Historical Geology has a page on the topic of: Subduction

Look up subduction in Wiktionary, the free dictionary.

Animation of a subduction zone. From the Seafloor to the Volcano's Top Video about the work of the Collaborative Research Center (SFB) 574 Volatiles and Fluids in Subduction
Subduction
Zones in Chile by GEOMAR I Helmholtz Centre for Ocean Research Kiel. [1] Realistic animation of plate forming processes beneath divergent plate margins and destruction of lithosphere beneath convergent plate margins (~ 9 minutes long).

v t e

Physical oceanography

Waves

Airy wave theory Ballantine scale Benjamin–Feir instability Boussinesq approximation Breaking wave Clapotis Cnoidal wave Cross sea Dispersion Edge wave Equatorial waves Fetch Gravity wave Green's law Infragravity wave Internal wave Iribarren number Kelvin wave Kinematic wave Longshore drift Luke's variational principle Mild-slope equation Radiation stress Rogue wave Rossby wave Rossby-gravity waves Sea state Seiche Significant wave height Soliton Stokes boundary layer Stokes drift Stokes wave Swell Trochoidal wave Tsunami

megatsunami

Undertow Ursell number Wave action Wave base Wave height Wave power Wave radar Wave setup Wave shoaling Wave turbulence Wave–current interaction Waves and shallow water

one-dimensional Saint-Venant equations shallow water equations

Wind wave

model

Circulation

Atmospheric circulation Baroclinity Boundary current Coriolis force Coriolis–Stokes force Craik–Leibovich vortex force Downwelling Eddy Ekman layer Ekman spiral Ekman transport El Niño–Southern Oscillation General circulation model Geostrophic current Global Ocean
Ocean
Data Analysis Project Gulf Stream Halothermal circulation Humboldt Current Hydrothermal circulation Langmuir circulation Longshore drift Loop Current Modular Ocean
Ocean
Model Ocean
Ocean
dynamics Ocean
Ocean
gyre Princeton ocean model Rip current Subsurface currents Sverdrup balance Thermohaline circulation

shutdown

Upwelling Whirlpool World Ocean
Ocean
Circulation Experiment

Tides

Amphidromic point Earth tide Head of tide Internal tide Lunitidal interval Perigean spring tide Rip tide Rule of twelfths Slack water Tidal bore Tidal force Tidal power Tidal race Tidal range Tidal resonance Tide
Tide
gauge Tideline

Landforms

Abyssal fan Abyssal plain Atoll Bathymetric chart Coastal geography Cold seep Continental margin Continental rise Continental shelf Contourite Guyot Hydrography Oceanic basin Oceanic plateau Oceanic trench Passive margin Seabed Seamount Submarine canyon Submarine volcano

Plate tectonics

Convergent boundary Divergent boundary Fracture zone Hydrothermal vent Marine geology Mid-ocean ridge Mohorovičić discontinuity Vine–Matthews–Morley hypothesis Oceanic crust Outer trench swell Ridge push Seafloor spreading Slab pull Slab suction Slab window Subduction Transform fault Volcanic arc

Ocean
Ocean
zones

Benthic Deep ocean water Deep sea Littoral Mesopelagic Oceanic Pelagic Photic Surf Swash

Sea level

Deep-ocean Assessment and Reporting of Tsunamis Future sea level Global Sea Level Observing System North West Shelf Operational Oceanographic System Sea-level curve Sea level
Sea level
rise World Geodetic System

Acoustics

Deep scattering layer Hydroacoustics Ocean
Ocean
acoustic tomography Sofar bomb SOFAR channel Underwater acoustics

Satellites

Jason-1 Jason-2 ( Ocean
Ocean
Surface Topography Mission) Jason-3

Related

Argo Benthic lander Color of water DSV Alvin Marginal sea Marine energy Marine pollution Mooring National Oceanographic Data Center Ocean Ocean
Ocean
exploration Ocean
Ocean
observations Ocean
Ocean
reanalysis Ocean
Ocean
surface topography Ocean
Ocean
thermal energy conversion Oceanography Pelagic sediment Sea surface microlayer Sea surface temperature Seawater Science On a Sphere Thermocline Underwater glider Water column World Ocean
Ocean
Atlas

Categ

.