The t-test is any statistical hypothesis test in which the test statistic follows a Student's t-distribution under the null hypothesis.

A t-test is the most commonly applied when the test statistic would follow a normal distribution if the value of a scaling term in the test statistic were known. When the scaling term is unknown and is replaced by an estimate based on the data, the test statistics (under certain conditions) follow a Student's t distribution. The t-test can be used, for example, to determine if the means of two sets of data are significantly different from each other.


Among the most frequently used t-tests are:

  • A one-sample location test of whether the mean of a population has a value specified in a null hypothesis.
  • A two-sample location test of the null hypothesis such that the means of two populations are equal. All such tests are usually called Student's t-tests, though strictly speaking that name should only be used if the variances of the two populations are also assumed to be equal; the form of the test used when this assumption is dropped is sometimes called Welch's t-test. These tests are often referred to as "unpaired" or "independent samples" t-tests, as they are typically applied when the statistical units underlying the two samples being compared are non-overlapping.[16]


Most test statistics have the form t = Z/s, where Z and s are functions of the data.

Z may be sensitive to the alternative hypothesis (i.e., its magnitude tends to be larger when the alternative hypothesis is true), whereas s is a scaling parameter that allows the distribution of t to be determined.

As an example, in the one-sample t-test