Paired Sample
   HOME





Paired Sample
Scientific experiments often require comparing two (or more) sets of data. In some cases, the data sets are paired, meaning there is an obvious and meaningful one-to-one correspondence between the data in the first set and the data in the second set, compare Blocking (statistics). For example, paired data can arise from measuring a single set of individuals at different points in time. A clinical trial might record the blood pressure in a set of ''n'' patients before and after administering a medicine. In this case, the "before" and "after" data sets are paired, as each patient has a "before" measurement and an "after" measurement, that are likely related. In contrast, another clinical trial might measure ''n'' patients before treatment and a different set of ''m'' patients after treatment; in that case, the "before" and "after" data are unpaired. Statistical tests used to compare sets of data have been designed for data sets that are either paired or unpaired, making it impor ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Scientific Method
The scientific method is an Empirical evidence, empirical method for acquiring knowledge that has been referred to while doing science since at least the 17th century. Historically, it was developed through the centuries from the ancient and medieval world. The scientific method involves careful observation coupled with rigorous skepticism, because Philosophy of science#Observation inseparable from theory, cognitive assumptions can distort the interpretation of the Perception#Process and terminology, observation. Scientific inquiry includes creating a testable hypothesis through inductive reasoning, testing it through experiments and statistical analysis, and adjusting or discarding the hypothesis based on the results. Although procedures vary across Branches of science, fields, the underlying #Process, process is often similar. In more detail: the scientific method involves making conjectures (hypothetical explanations), predicting the logical consequences of hypothesis, then ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Blocking (statistics)
In the statistical theory of the design of experiments, blocking is the arranging of experimental units that are similar to one another in groups (blocks) based on one or more variables. These variables are chosen carefully to minimize the effect of their variability on the observed outcomes. There are different ways that blocking can be implemented, resulting in different confounding effects. However, the different methods share the same purpose: to control variability introduced by specific factors that could influence the outcome of an experiment. The roots of blocking originated from the statistician, Ronald Fisher, following his development of Analysis of variance, ANOVA. History The use of blocking in experimental design has an evolving history that spans multiple disciplines. The foundational concepts of blocking date back to the early 20th century with statisticians like Ronald A. Fisher. His work in developing analysis of variance (ANOVA) set the groundwork for grouping ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


McNemar's Test
McNemar's test is a statistical test used on paired nominal data. It is applied to 2 × 2 contingency tables with a dichotomous trait, with matched pairs of subjects, to determine whether the row and column marginal frequencies are equal (that is, whether there is "marginal homogeneity"). It is named after Quinn McNemar, who introduced it in 1947. An application of the test in genetics is the transmission disequilibrium test for detecting linkage disequilibrium. The commonly used parameters to assess a diagnostic test in medical sciences are sensitivity and specificity. Sensitivity (or recall) is the ability of a test to correctly identify the people with disease. Specificity is the ability of the test to correctly identify those without the disease. Now presume two tests are performed on the same group of patients. And also presume that these tests have identical sensitivity and specificity. In this situation one is carried away by these findings and presume ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Permutation Test
A permutation test (also called re-randomization test or shuffle test) is an exact statistical hypothesis test. A permutation test involves two or more samples. The (possibly counterfactual) null hypothesis is that all samples come from the same distribution H_0: F=G. Under the null hypothesis, the distribution of the test statistic is obtained by calculating all possible values of the test statistic under possible rearrangements of the observed data. Permutation tests are, therefore, a form of resampling. Permutation tests can be understood as surrogate data testing where the surrogate data under the null hypothesis are obtained through permutations of the original data. In other words, the method by which treatments are allocated to subjects in an experimental design is mirrored in the analysis of that design. If the labels are exchangeable under the null hypothesis, then the resulting tests yield exact significance levels; see also exchangeability. Confidence intervals can ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Pearson's Chi-squared Test
Pearson's chi-squared test or Pearson's \chi^2 test is a statistical test applied to sets of categorical data to evaluate how likely it is that any observed difference between the sets arose by chance. It is the most widely used of many chi-squared tests (e.g., Yates, likelihood ratio, portmanteau test in time series, etc.) – statistical procedures whose results are evaluated by reference to the chi-squared distribution. Its properties were first investigated by Karl Pearson in 1900. In contexts where it is important to improve a distinction between the test statistic and its distribution, names similar to ''Pearson χ-squared'' test or statistic are used. It is a p-value test. The setup is as follows: * Before the experiment, the experimenter fixes a certain number N of samples to take. * The observed data is (O_1, O_2, ..., O_n), the count number of samples from a finite set of given categories. They satisfy \sum_i O_i = N. * The null hypothesis is that the count numbers ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Fisher's Exact Test
Fisher's exact test (also Fisher-Irwin test) is a statistical significance test used in the analysis of contingency tables. Although in practice it is employed when sample sizes are small, it is valid for all sample sizes. The test assumes that all row and column sums of the contingency table were fixed by design and tends to be conservative and underpowered outside of this setting. It is one of a class of exact tests, so called because the significance of the deviation from a null hypothesis (e.g., ''p''-value) can be calculated exactly, rather than relying on an approximation that becomes exact in the limit as the sample size grows to infinity, as with many statistical tests. The test is named after its inventor, Ronald Fisher, who is said to have devised the test following a comment from Muriel Bristol, who claimed to be able to detect whether the tea or the milk was added first to her cup. He tested her claim in the "lady tasting tea" experiment. Purpose and scope The te ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


Paired Difference Test
A paired difference test, better known as a paired comparison, is a type of location test that is used when comparing two sets of paired sample, paired measurements to assess whether their expected value, population means differ. A paired difference test is designed for situations where there is dependence between pairs of measurements (in which case a test designed for comparing two independent samples would not be appropriate). That applies in a within-subjects study design, i.e., in a study where the same set of subjects undergo both of the conditions being compared. Specific methods for carrying out paired difference tests include the paired-samples t-test, the paired Z-test, the Wilcoxon signed-rank test and others. Use in reducing variance Paired difference tests for reducing variance are a specific type of blocking (statistics), blocking. To illustrate the idea, suppose we are assessing the performance of a drug for treating high cholesterol. Under the design of our stu ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]  


picture info

Variance Reduction
In mathematics, more specifically in the theory of Monte Carlo methods, variance reduction is a procedure used to increase the precision of the estimates obtained for a given simulation or computational effort. Every output random variable from the simulation is associated with a variance which limits the precision of the simulation results. In order to make a simulation statistically efficient, i.e., to obtain a greater precision and smaller confidence intervals for the output random variable of interest, variance reduction techniques can be used. The main variance reduction methods are * common random numbers * antithetic variates * control variates * importance sampling * stratified sampling * moment matching * conditional Monte Carlo * and quasi random variables (in Quasi-Monte Carlo method) For simulation with black-box models subset simulation and line sampling can also be used. Under these headings are a variety of specialized techniques; for example, parti ...
[...More Info...]      
[...Related Items...]     OR:     [Wikipedia]   [Google]   [Baidu]