Streptavidin
   HOME

TheInfoList



OR:

Streptavidin is a 66.0 (tetramer)
kDa The dalton or unified atomic mass unit (symbols: Da or u) is a non-SI unit of mass widely used in physics and chemistry. It is defined as of the mass of an unbound neutral atom of carbon-12 in its nuclear and electronic ground state and at re ...
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, respo ...
purified from the
bacterium Bacteria (; singular: bacterium) are ubiquitous, mostly free-living organisms often consisting of one biological cell. They constitute a large domain of prokaryotic microorganisms. Typically a few micrometres in length, bacteria were among ...
'' Streptomyces avidinii''. Streptavidin homo-tetramers have an extraordinarily high affinity for
biotin Biotin (or vitamin B7) is one of the B vitamins. It is involved in a wide range of metabolic processes, both in humans and in other organisms, primarily related to the utilization of fats, carbohydrates, and amino acids. The name ''biotin'', bor ...
(also known as vitamin B7 or vitamin H). With a
dissociation constant In chemistry, biochemistry, and pharmacology, a dissociation constant (K_D) is a specific type of equilibrium constant that measures the propensity of a larger object to separate (dissociate) reversibly into smaller components, as when a complex fa ...
(Kd) on the order of ≈10−14 mol/L, the binding of biotin to streptavidin is one of the strongest non-covalent interactions known in nature. Streptavidin is used extensively in molecular biology and bionanotechnology due to the streptavidin-biotin complex's resistance to organic solvents, denaturants (e.g.
guanidinium chloride Guanidinium chloride or guanidine hydrochloride, usually abbreviated GdmCl and sometimes GdnHCl or GuHCl, is the hydrochloride salt of guanidine. Structure Guanidinium chloride crystallizes in orthorhombic space group ''Pbca''. The crystal stru ...
), detergents (e.g. SDS,
Triton X-100 Triton X-100 (''n'') is a nonionic surfactant that has a hydrophilic polyethylene oxide chain (on average it has 9.5 ethylene oxide units) and an aromatic hydrocarbon lipophilic or hydrophobic group. The hydrocarbon group is a 4-( 1,1,3,3-tetramet ...
), proteolytic enzymes, and extremes of temperature and pH.


Structure

The crystal structure of streptavidin with biotin bound was reported by two groups in 1989. The structure was solved using multi wavelength anomalous diffraction by Hendrickson et al. at
Columbia University Columbia University (also known as Columbia, and officially as Columbia University in the City of New York) is a private research university in New York City. Established in 1754 as King's College on the grounds of Trinity Church in Manhatt ...
and using multiple isomorphous replacement by Weber et al. at E. I. DuPont Central Research and Development Department. As of September 2017, there are 171 structures deposited in the
Protein Data Bank The Protein Data Bank (PDB) is a database for the three-dimensional structural data of large biological molecules, such as proteins and nucleic acids. The data, typically obtained by X-ray crystallography, NMR spectroscopy, or, increasingly, cry ...
. Se
this link
for a complete list. The N and C termini of the 159 residue full-length protein are processed to give a shorter ‘core’ streptavidin, usually composed of residues 13–139; removal of the N and C termini is necessary for the highest biotin-binding affinity. The secondary structure of a streptavidin monomer is composed of eight antiparallel β-strands, which fold to give an antiparallel β-barrel tertiary structure. A
biotin Biotin (or vitamin B7) is one of the B vitamins. It is involved in a wide range of metabolic processes, both in humans and in other organisms, primarily related to the utilization of fats, carbohydrates, and amino acids. The name ''biotin'', bor ...
binding-site is located at one end of each β-barrel. Four identical streptavidin monomers (i.e. four identical β-barrels) associate to give streptavidin's tetrameric quaternary structure. The biotin binding-site in each barrel consists of residues from the interior of the barrel, together with a conserved Trp120 from a neighboring subunit. In this way, each subunit contributes to the binding site on the neighboring subunit, and so the tetramer can also be considered a dimer of functional dimers.


Origins of the high affinity

The numerous crystal structures of the streptavidin-biotin complex have shed light on the origins of the remarkable affinity. Firstly, there is high shape-complementarity between the binding pocket and biotin. Secondly, there is an extensive network of hydrogen bonds formed to biotin when in the binding site. There are eight
hydrogen bonds In chemistry, a hydrogen bond (or H-bond) is a primarily electrostatic force of attraction between a hydrogen (H) atom which is covalently bound to a more electronegative "donor" atom or group (Dn), and another electronegative atom bearing a ...
directly made to residues in the binding site (the so-called 'first shell' of hydrogen bonding), involving residues Asn23, Tyr43, Ser27, Ser45, Asn49, Ser88, Thr90 and Asp128. There is also a 'second shell' of hydrogen bonding involving residues that interact with the first shell residues. However, the streptavidin-biotin affinity exceeds that which would be predicted from the hydrogen bonding interactions alone, suggesting another mechanism contributing to the high affinity. The biotin-binding pocket is
hydrophobic In chemistry, hydrophobicity is the physical property of a molecule that is seemingly repelled from a mass of water (known as a hydrophobe). In contrast, hydrophiles are attracted to water. Hydrophobic molecules tend to be nonpolar and, th ...
, and there are numerous
van der Waals force In molecular physics, the van der Waals force is a distance-dependent interaction between atoms or molecules. Unlike ionic or covalent bonds, these attractions do not result from a chemical electronic bond; they are comparatively weak and th ...
-mediated contacts and hydrophobic interactions made to the biotin when in the pocket, which is also thought to account for the high affinity. In particular, the pocket is lined with conserved tryptophan residues. Lastly, biotin binding is accompanied by the stabilisation of a flexible loop connecting β-strands 3 and 4 (L3/4), which closes over the bound biotin, acting like a 'lid' over the binding pocket and contributing to the extremely slow biotin dissociation rate. Most attempts at mutating streptavidin result in a lowered biotin-binding affinity, which is to be expected in such a highly optimized system. However, a recently engineered mutant of streptavidin, named traptavidin, was found to have more than ten-fold slower biotin dissociation, in addition to higher thermal and mechanical stability. This decreased dissociation rate was accompanied by a two-fold decrease in the association rate. Biotin-binding affinity can be impaired by chemical labeling of streptavidin, such as with amine-reactive
fluorophores A fluorophore (or fluorochrome, similarly to a chromophore) is a fluorescent chemical compound that can re-emit light upon light excitation. Fluorophores typically contain several combined aromatic groups, or planar or cyclic molecules with sev ...
; flavidin is a streptavidin mutant without lysine side-chains, which retains good biotin binding characteristics after such fluorescent dye labeling where the dye couples to the amino terminus.


Uses in biotechnology

Among the most common uses of streptavidin are the purification or detection of various biomolecules. The strong streptavidin-biotin interaction can be used to attach various biomolecules to one another or onto a solid support. Harsh conditions are needed to break the streptavidin-biotin interaction, which often denatures the protein of interest being purified. However, it has been shown that a short incubation in water above 70 °C will reversibly break the interaction (at least for biotinylated DNA) without denaturing streptavidin, allowing re-use of the streptavidin solid support. A further application of streptavidin is for purification and detection of proteins genetically modified with the Strep-tag peptide. Streptavidin is widely used in
Western blot The western blot (sometimes called the protein immunoblot), or western blotting, is a widely used analytical technique in molecular biology and immunogenetics to detect specific proteins in a sample of tissue homogenate or extract. Besides detect ...
ting and immunoassays conjugated to some reporter molecule, such as horseradish peroxidase. Streptavidin has also been used in the developing field of Nanobiotechnology, the use of biological molecules such as proteins or lipids to create
nanoscale The nanoscopic scale (or nanoscale) usually refers to structures with a length scale applicable to nanotechnology, usually cited as 1–100 nanometers (nm). A nanometer is a billionth of a meter. The nanoscopic scale is (roughly speaking) a lo ...
devices/structures. In this context streptavidin can be used as a building block to link biotinylated DNA molecules to create single walled
carbon nanotube A scanning tunneling microscopy image of a single-walled carbon nanotube Rotating single-walled zigzag carbon nanotube A carbon nanotube (CNT) is a tube made of carbon with diameters typically measured in nanometers. ''Single-wall carbon na ...
scaffolds or even complex DNA polyhedra. The tetrameric streptavidin has also been used as a hub around which other proteins may be arranged, either by an affinity tag such as Strep-tag or AviTag or by genetic fusion to SpyTag. Fusion to SpyTag allowed generation of assemblies with 8 or 20 streptavidin subunits. As well as a molecular force probe for
atomic force microscopy Atomic force microscopy (AFM) or scanning force microscopy (SFM) is a very-high-resolution type of scanning probe microscopy (SPM), with demonstrated resolution on the order of fractions of a nanometer, more than 1000 times better than the op ...
studies, novel materials such as 3D crystalline lattices have also been created. Streptavidin has a mildly acidic
isoelectric point The isoelectric point (pI, pH(I), IEP), is the pH at which a molecule carries no net electrical charge or is electrically neutral in the statistical mean. The standard nomenclature to represent the isoelectric point is pH(I). However, pI is also u ...
(pI) of ~5, but a recombinant form of streptavidin with a near-neutral pI is also commercially available. ;Pretargeted Immunotherapy Pretargeted immunotherapy uses streptavidin conjugated to a monoclonal antibody against cancer cell-specific antigens followed by an injection of radiolabelled biotin to deliver the radiation only to the cancerous cell. Initial hurdles involve saturation of the biotin binding sites on streptavidin with endogenous biotin instead of the injected radiolabelled biotin, and a high degree of radioactive exposure in the kidneys due to streptavidin's strong cell adsorptive properties. It is currently thought that this high level of binding to adherent cell types, such as activated platelets and melanomas, is a result of
integrin Integrins are transmembrane receptors that facilitate cell-cell and cell-extracellular matrix (ECM) adhesion. Upon ligand binding, integrins activate signal transduction pathways that mediate cellular signals such as regulation of the cell cycle, ...
binding mediated through the RYD sequence in streptavidin.


Variants with a controlled number of binding sites

;Monovalent vs. monomeric Streptavidin is a tetramer and each subunit binds biotin with equal affinity. Multivalency is an advantage in applications like MHC tetramer staining, where avidity effects improve the ability of MHC molecules attached to streptavidin to detect specific T cells. In other cases, such as the use of streptavidin for imaging specific proteins on cells, multivalency can perturb the function of the protein of interest. Monovalent streptavidin is an engineered recombinant form of streptavidin which is a tetramer but only one of the four binding sites is functional. This single binding site has 10−14 mol/L affinity and cannot cause cross-linking. Applications of monovalent streptavidin have included fluorescent tracking of
cell surface receptors Cell surface receptors (membrane receptors, transmembrane receptors) are receptors that are embedded in the plasma membrane of cells. They act in cell signaling by receiving (binding to) extracellular molecules. They are specialized integral me ...
, decorating
DNA origami DNA origami is the nanoscale folding of DNA to create arbitrary two- and three-dimensional shapes at the nanoscale. The specificity of the interactions between complementary base pairs make DNA a useful construction material, through design of ...
, and acting as a pointer to identify specific regions for
cryo-electron microscopy Cryogenic electron microscopy (cryo-EM) is a cryomicroscopy technique applied on samples cooled to cryogenic temperatures. For biological specimens, the structure is preserved by embedding in an environment of vitreous ice. An aqueous sample s ...
. Monomeric streptavidin is a recombinant form of streptavidin with mutations to break the tetramer into a monomer and to enhance the solubility of the resultant isolated subunit. Monomeric streptavidin versions have an affinity for biotin of 10−7mol/L 10−8mol/L and so are not ideal for labeling applications but are useful for purification, where reversibility is desirable. ;Divalent A streptavidin with exactly two biotin binding sites per tetramer can be produced by mixing subunits with and without a functional biotin binding site and purification by
ion-exchange chromatography Ion chromatography (or ion-exchange chromatography) separates ions and polar molecules based on their affinity to the ion exchanger. It works on almost any kind of charged molecule—including large proteins, small nucleotides, and amino a ...
. The functional binding sites here have the same biotin binding stability as wild-type streptavidin. Divalent streptavidin with the two biotin binding sites together (cis-divalent) or apart (trans-divalent) can be separately purified. ;Trivalent A streptavidin with exactly three biotin binding sites per tetramer can also be produced using the same principle as to produce divalent streptavidins. ;High-valency streptavidins Streptavidins of higher valency has been obtained by utilizing the chemistry of isopeptide bond conjugation using the SpyTag/SpyCatcher technology. This involves having a streptavidin tetramer with three biotin binding sites and a dead streptavidin fused to either SpyTag or SpyCatcher. When the different tetramers are mixed together, a covalent linkage occurs to enable higher number of biotin binding sites. Six and twelve biotin binding sites per molecule have been made with this method.


Comparison to avidin

Streptavidin is not the only protein capable of binding to biotin with high affinity.
Avidin Avidin is a tetrameric biotin-binding protein produced in the oviducts of birds, reptiles and amphibians and deposited in the whites of their eggs. Dimeric members of the avidin family are also found in some bacteria. In chicken egg white, avidin ...
is the other most notable biotin-binding protein. Originally isolated from egg yolk, avidin only has 30% sequence identity to streptavidin, but almost identical secondary, tertiary and quaternary structure. Avidin has a higher affinity for biotin (''Kd'' ~ 10−15M) but in contrast to streptavidin, avidin is glycosylated, positively charged, has pseudo-catalytic activity (avidin can enhance the alkaline hydrolysis of an ester linkage between biotin and a nitrophenyl group) and has a higher tendency for aggregation. On the other hand, streptavidin is the better biotin-conjugate binder; avidin has a lower binding affinity than streptavidin when biotin is conjugated to another molecule, despite avidin having the higher affinity for free, unconjugated biotin. Because streptavidin lacks any
carbohydrate In organic chemistry, a carbohydrate () is a biomolecule consisting of carbon (C), hydrogen (H) and oxygen (O) atoms, usually with a hydrogen–oxygen atom ratio of 2:1 (as in water) and thus with the empirical formula (where ''m'' may or ma ...
modification and has a near-neutral pI, it has the advantage of much lower nonspecific binding than avidin. Deglycosylated avidin (NeutrAvidin) is more comparable to the size, pI, and nonspecific binding of streptavidin.


See also

*
Protein tag Protein tags are peptide sequences genetically grafted onto a recombinant protein. Tags are attached to proteins for various purposes. They can be added to either end of the target protein, so they are either C-terminus or N-terminus specific or a ...


References


Further reading

* * *


External links


Swiss-Prot entry for Streptavidin precursor from ''Streptomyces avidinii''
* {{MeshName, Streptavidin
Egg-stremely useful interaction
QUite Interesting PDB Structure article a
PDBe
Groups investigating and developing streptavidin or avidin-family proteins (Alphabetical order)
Howarth lab (University of Cambridge)

Hytönen lab (University of Tampere)



Stenkamp lab (University of Washington)


Bacterial proteins