Solar panel
   HOME

TheInfoList



OR:

A solar panel is a device that converts
sunlight Sunlight is the portion of the electromagnetic radiation which is emitted by the Sun (i.e. solar radiation) and received by the Earth, in particular the visible spectrum, visible light perceptible to the human eye as well as invisible infrare ...
into
electricity Electricity is the set of physical phenomena associated with the presence and motion of matter possessing an electric charge. Electricity is related to magnetism, both being part of the phenomenon of electromagnetism, as described by Maxwel ...
by using
photovoltaic Photovoltaics (PV) is the conversion of light into electricity using semiconducting materials that exhibit the photovoltaic effect, a phenomenon studied in physics, photochemistry, and electrochemistry. The photovoltaic effect is commercially ...
(PV) cells. PV cells are made of materials that produce excited
electrons The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary charge, elementary electric charge. It is a fundamental particle that comprises the ordinary matter that makes up the universe, along with up qua ...
when exposed to light. These electrons flow through a circuit and produce
direct current Direct current (DC) is one-directional electric current, flow of electric charge. An electrochemical cell is a prime example of DC power. Direct current may flow through a conductor (material), conductor such as a wire, but can also flow throug ...
(DC) electricity, which can be used to power various devices or be stored in batteries. Solar panels are also known as solar cell panels, solar electric panels, or PV modules. Solar panels are usually arranged in groups called arrays or systems. A
photovoltaic system A photovoltaic system, also called a PV system or solar power system, is an electric power system designed to supply usable solar power by means of photovoltaics. It consists of an arrangement of several components, including solar panels to abso ...
consists of one or more solar panels, an inverter that converts DC electricity to
alternating current Alternating current (AC) is an electric current that periodically reverses direction and changes its magnitude continuously with time, in contrast to direct current (DC), which flows only in one direction. Alternating current is the form in w ...
(AC) electricity, and sometimes other components such as controllers,
meters The metre (or meter in US spelling; symbol: m) is the base unit of length in the International System of Units (SI). Since 2019, the metre has been defined as the length of the path travelled by light in vacuum during a time interval of of ...
, and trackers. Most panels are in solar farms or rooftop solar panels which supply the electricity grid. Some advantages of solar panels are that they use a renewable and clean source of energy, reduce
greenhouse gas emissions Greenhouse gas (GHG) emissions from human activities intensify the greenhouse effect. This contributes to climate change. Carbon dioxide (), from burning fossil fuels such as coal, petroleum, oil, and natural gas, is the main cause of climate chan ...
, and lower electricity bills. Some disadvantages are that they depend on the availability and intensity of sunlight, require cleaning, and have high initial costs. Solar panels are widely used for residential, commercial, and industrial purposes, as well as in
space Space is a three-dimensional continuum containing positions and directions. In classical physics, physical space is often conceived in three linear dimensions. Modern physicists usually consider it, with time, to be part of a boundless ...
, often together with batteries.


History

In 1839, the ability of some materials to create an electrical charge from light exposure was first observed by the French physicist Edmond Becquerel. Though these initial solar panels were too inefficient for even simple electric devices, they were used as an instrument to measure light. The observation by Becquerel was not replicated again until 1873, when the English electrical engineer
Willoughby Smith Willoughby Smith (6 April 1828, in Great Yarmouth, Norfolk – 17 July 1891, in Eastbourne, Sussex) was an English electrical engineer who discovered the photoconductivity of the element selenium. This discovery led to the invention of photoele ...
discovered that the charge could be caused by light hitting
selenium Selenium is a chemical element; it has symbol (chemistry), symbol Se and atomic number 34. It has various physical appearances, including a brick-red powder, a vitreous black solid, and a grey metallic-looking form. It seldom occurs in this elem ...
. After this discovery, William Grylls Adams and Richard Evans Day published "The action of light on selenium" in 1876, describing the experiment they used to replicate Smith's results. In 1881, the American inventor Charles Fritts created the first commercial solar panel, which was reported by Fritts as "continuous, constant and of considerable force not only by exposure to sunlight but also to dim, diffused daylight". However, these solar panels were very inefficient, especially compared to coal-fired power plants. In 1939,
Russell Ohl Russell Shoemaker Ohl (January 30, 1898 – March 20, 1987) was an American scientist who is generally recognized for patenting the modern solar cell (, "Light sensitive device"). Ohl was a notable semiconductor researcher prior to the invention ...
created the solar cell design that is used in many modern solar panels. He patented his design in 1941. In 1954, this design was first used by
Bell Labs Nokia Bell Labs, commonly referred to as ''Bell Labs'', is an American industrial research and development company owned by Finnish technology company Nokia. With headquarters located in Murray Hill, New Jersey, Murray Hill, New Jersey, the compa ...
to create the first commercially viable
silicon Silicon is a chemical element; it has symbol Si and atomic number 14. It is a hard, brittle crystalline solid with a blue-grey metallic lustre, and is a tetravalent metalloid (sometimes considered a non-metal) and semiconductor. It is a membe ...
solar cell. Solar panel installers saw significant growth between 2008 and 2013. Due to that growth many installers had projects that were not "ideal" solar roof tops to work with and had to find solutions to shaded roofs and orientation difficulties. This challenge was initially addressed by the re-popularization of
micro-inverter A solar inverter or photovoltaic (PV) inverter is a type of power inverter which converts the variable direct current (DC) output of a photovoltaic solar panel into a utility frequency alternating current (AC) that can be fed into a commercial ...
s and later the invention of power optimizers. Solar panel manufacturers partnered with micro-inverter companies to create AC modules and power optimizer companies partnered with module manufacturers to create smart modules. In 2013 many solar panel manufacturers announced and began shipping their smart module solutions.


Theory and construction

Photovoltaic Photovoltaics (PV) is the conversion of light into electricity using semiconducting materials that exhibit the photovoltaic effect, a phenomenon studied in physics, photochemistry, and electrochemistry. The photovoltaic effect is commercially ...
modules consist of a large number of solar cells and use light energy (
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are massless particles that can ...
s) from the Sun to generate electricity through the
photovoltaic effect The photovoltaic effect is the generation of voltage and electric current in a material upon exposure to light. It is a physical phenomenon. The photovoltaic effect is closely related to the photoelectric effect. For both phenomena, light is a ...
. Most modules use wafer-based
crystalline silicon Crystalline silicon or (c-Si) is the crystalline forms of silicon, either polycrystalline silicon (poly-Si, consisting of small crystals), or monocrystalline silicon (mono-Si, a continuous crystal). Crystalline silicon is the dominant semicon ...
cells or thin-film cells. The structural ( load carrying) member of a module can be either the top layer or the back layer. Cells must be protected from mechanical damage and moisture. Most modules are rigid, but semi-flexible ones based on thin-film cells are also available. The cells are usually connected electrically in
series Series may refer to: People with the name * Caroline Series (born 1951), English mathematician, daughter of George Series * George Series (1920–1995), English physicist Arts, entertainment, and media Music * Series, the ordered sets used i ...
, one to another to the desired voltage, and then in parallel to increase current. The power (in
watt The watt (symbol: W) is the unit of Power (physics), power or radiant flux in the International System of Units (SI), equal to 1 joule per second or 1 kg⋅m2⋅s−3. It is used to quantification (science), quantify the rate of Work ...
s) of the module is the
voltage Voltage, also known as (electrical) potential difference, electric pressure, or electric tension, is the difference in electric potential between two points. In a Electrostatics, static electric field, it corresponds to the Work (electrical), ...
(in
volt The volt (symbol: V) is the unit of electric potential, Voltage#Galvani potential vs. electrochemical potential, electric potential difference (voltage), and electromotive force in the International System of Units, International System of Uni ...
s) multiplied by the current (in
ampere The ampere ( , ; symbol: A), often shortened to amp,SI supports only the use of symbols and deprecates the use of abbreviations for units. is the unit of electric current in the International System of Units (SI). One ampere is equal to 1 c ...
s), and depends both on the amount of light and on the
electrical load An electrical load is an electrical component or portion of a Electric Circuit, circuit that consumes (active) electric power, such as electrical appliances and Electric light, lights inside the home. The term may also refer to the power Power con ...
connected to the module. The manufacturing specifications on solar panels are obtained under standard conditions, which are usually not the true operating conditions the solar panels are exposed to on the installation site. A PV
junction box An electrical junction box (also known as a "jbox") is an enclosure housing electrical connections. Junction boxes protect the electrical connections from the weather, as well as protecting people from accidental electric shocks. Functions of ...
is attached to the back of the solar panel and functions as its output interface. External connections for most photovoltaic modules use MC4 connectors to facilitate easy weatherproof connections to the rest of the system. A USB power interface can also be used. Solar panels also use metal frames consisting of racking components, brackets, reflector shapes, and troughs to better support the panel structure.


Cell connection techniques

Solar modular cells need to be connected together to form the module, with front electrodes blocking the solar cell front optical surface area slightly. To maximize frontal surface area available for sunlight and improve solar cell efficiency, manufacturers use varying rear electrode solar cell connection techniques: * Passivated emitter rear contact (PERC) uses aluminum rear contact face and adds a polymer film to capture light * Tunnel oxide passivated contact (TOPCon) uses increasingly smaller silver rear bus bars and adds an oxidation layer to the PERC film to capture more light * Interdigitated back contact (IBC)


Arrays of PV modules

A single solar module can produce only a limited amount of power; most installations contain multiple modules adding their voltages or currents. A photovoltaic system typically includes an array of photovoltaic modules, an inverter, a
battery pack A battery pack is a set of any number of (preferably) identical Battery (electricity), batteries or individual battery cells. They may be configured in a series, parallel or a mixture of both to deliver the desired voltage and current. The term ' ...
for energy storage, a charge controller, interconnection wiring, circuit breakers, fuses, disconnect switches, voltage meters, and optionally a solar tracking mechanism. Equipment is carefully selected to optimize energy output and storage, reduce power transmission losses, and convert from direct current to alternating current.


Smart solar modules

Smart modules are different from traditional solar panels because the power electronics embedded in the module offers enhanced functionality such as panel-level maximum power point tracking, monitoring, and enhanced safety. Power electronics attached to the frame of a solar module, or connected to the photovoltaic circuit through a connector, are not properly considered smart modules. Several companies have begun incorporating into each PV module various embedded power electronics such as: * Maximum power point tracking (MPPT) power optimizers, a DC-to-DC converter technology developed to maximize the power harvest from solar photovoltaic systems by compensating for shading effects, wherein a shadow falling on a section of a module causes the electrical output of one or more strings of cells in the module to fall to near zero, but not having the output of the entire module fall to zero. * Solar performance monitors for data and fault detection


Technology

Most solar modules are currently produced from crystalline silicon (c-Si)
solar cells A solar cell, also known as a photovoltaic cell (PV cell), is an electronic device that converts the energy of light directly into electricity by means of the photovoltaic effect.
made of
polycrystalline A crystallite is a small or even microscopic crystal which forms, for example, during the cooling of many materials. Crystallites are also referred to as grains. Bacillite is a type of crystallite. It is rodlike with parallel longulites. S ...
or monocrystalline silicon. In 2021, crystalline silicon accounted for 95% of worldwide PV production, while the rest of the overall market is made up of thin-film technologies using cadmium telluride (CdTe), copper indium gallium selenide (CIGS) and amorphous silicon . Emerging, third-generation solar technologies use advanced thin-film cells. They produce a relatively high-efficiency conversion for a lower cost compared with other solar technologies. Also, high-cost, high-efficiency, and close-packed rectangular multi-junction (MJ) cells are usually used in solar panels on spacecraft, as they offer the highest ratio of generated power per kilogram lifted into space. MJ-cells are
compound semiconductor Semiconductor materials are nominally small band gap insulators. The defining property of a semiconductor material is that it can be compromised by doping it with impurities that alter its electronic properties in a controllable way. Because of ...
s and made of
gallium arsenide Gallium arsenide (GaAs) is a III-V direct band gap semiconductor with a Zincblende (crystal structure), zinc blende crystal structure. Gallium arsenide is used in the manufacture of devices such as microwave frequency integrated circuits, monoli ...
(GaAs) and other semiconductor materials. Another emerging PV technology using MJ-cells is concentrator photovoltaics (CPV).


Thin film


Concentrator

Some special solar PV modules include concentrators in which light is focused by
lenses A lens is a transmissive optical device that focuses or disperses a light beam by means of refraction. A simple lens consists of a single piece of transparent material, while a compound lens consists of several simple lenses (''elements''), ...
or mirrors onto smaller cells. This enables the cost-effective use of highly efficient, but expensive cells (such as
gallium arsenide Gallium arsenide (GaAs) is a III-V direct band gap semiconductor with a Zincblende (crystal structure), zinc blende crystal structure. Gallium arsenide is used in the manufacture of devices such as microwave frequency integrated circuits, monoli ...
) with the trade-off of using a higher solar exposure area. Concentrating the sunlight can also raise the efficiency to around 45%.


Light capture

The amount of light absorbed by a solar cell depends on the angle of incidence of whatever direct sunlight hits it. This is partly because the amount falling on the panel is proportional to the
cosine In mathematics, sine and cosine are trigonometric functions of an angle. The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side opposite that ...
of the angle of incidence, and partly because at high angle of incidence more light is reflected. To maximize total energy output, modules are often oriented to face south (in the Northern Hemisphere) or north (in the Southern Hemisphere) and tilted to allow for the latitude. Solar tracking can be used to keep the angle of incidence small. Solar panels are often coated with an
anti-reflective coating An antireflective, antiglare or anti-reflection (AR) coating is a type of optical coating applied to the surface of lens (optics), lenses, other optical elements, and photovoltaic cells to reduce reflection (physics), reflection. In typical ima ...
, which is one or more thin layers of substances with refractive indices intermediate between that of silicon and that of air. This causes
destructive interference In physics, interference is a phenomenon in which two coherent waves are combined by adding their intensities or displacements with due consideration for their phase difference. The resultant wave may have greater amplitude (constructive in ...
in the reflected light, diminishing the amount. Photovoltaic manufacturers have been working to decrease reflectance with improved anti-reflective coatings or with textured glass.


Power curve

In general with individual solar panels, if not enough current is taken, then power isn't maximised. If too much current is taken then the voltage collapses. The optimum current draw is roughly proportional to the amount of sunlight striking the panel. Solar panel capacity is specified by the MPP (maximum power point) value of solar panels in full sunlight.


Inverters

Solar inverters convert the DC power provided by panels to AC power. MPP (Maximum power point) of the solar panel consists of MPP voltage (V) and MPP current (I). Performing maximum power point tracking (MPPT), a solar inverter samples the output (I-V curve) from the solar cell and applies the proper electrical load to obtain maximum power. An AC (
alternating current Alternating current (AC) is an electric current that periodically reverses direction and changes its magnitude continuously with time, in contrast to direct current (DC), which flows only in one direction. Alternating current is the form in w ...
) solar panel has a small DC to AC microinverter on the back and produces
AC power In an electric circuit, instantaneous power is the time rate of flow of energy past a given point of the circuit. In alternating current circuits, energy storage elements such as inductors and capacitors may result in periodic reversals of the d ...
with no external
DC connector A DC connector (or DC plug, for one common type) is an electrical connector that supplies direct current (DC) power. Compared to domestic AC power plugs and sockets, DC connectors have many more standard types that are not interchangeable. The d ...
. AC modules are defined by
Underwriters Laboratories The UL enterprise is a global private safety company headquartered in Northbrook, Illinois, composed of three organizations, UL Research Institutes, UL Standards & Engagement and UL Solutions. Established in 1894, the UL enterprise was founded a ...
as the smallest and most complete system for harvesting solar energy. Micro-inverters work independently to enable each panel to contribute its maximum possible output for a given amount of sunlight, but can be more expensive.


Module interconnection

Module electrical connections are made with conducting wires that take the current off the modules and are sized according to the current rating and fault conditions, and sometimes include in-line fuses. Panels are typically connected in series of one or more panels to form strings to achieve a desired output voltage, and strings can be connected in parallel to provide the desired current capability (amperes) of the PV system. In string connections the voltages of the modules add, but the current is determined by the lowest performing panel. This is known as the "Christmas light effect". In parallel connections the voltages will be the same, but the currents add. Arrays are connected up to meet the voltage requirements of the inverters and to not greatly exceed the current limits. Blocking and bypass
diode A diode is a two-Terminal (electronics), terminal electronic component that conducts electric current primarily in One-way traffic, one direction (asymmetric electrical conductance, conductance). It has low (ideally zero) Electrical resistance ...
s may be incorporated within the module or used externally to deal with partial array shading, in order to maximize output. For series connections, bypass diodes are placed in parallel with modules to allow current to bypass shaded modules which would otherwise severely limit the current. For paralleled connections, a blocking diode may be placed in series with each module's string to prevent current flowing backwards through shaded strings thus short-circuiting other strings. If three or more strings are connected in parallel, fuses are generally included on each string to eliminate the possibility of diode failures overloading the panels and wiring and causing fires.


Connectors

Outdoor solar panels usually include MC4 connectors, automotive solar panels may include an auxiliary power outlet and/or
USB Universal Serial Bus (USB) is an industry standard, developed by USB Implementers Forum (USB-IF), for digital data transmission and power delivery between many types of electronics. It specifies the architecture, in particular the physical ...
adapter and indoor panels may have a microinverter.


Efficiency

Each module is rated by its DC output power under standard test conditions (STC) and hence the on field output power might vary. Power typically ranges from 100 to 365
Watt The watt (symbol: W) is the unit of Power (physics), power or radiant flux in the International System of Units (SI), equal to 1 joule per second or 1 kg⋅m2⋅s−3. It is used to quantification (science), quantify the rate of Work ...
s (W). The efficiency of a module determines the area of a module given the same rated output an 8% efficient 230 W module will have twice the area of a 16% efficient 230 W module. Some commercially available solar modules exceed 24% efficiency. As of 2025, the best achieved sunlight conversion rate (solar module efficiency) is around 24.5% in new commercial products typically lower than the efficiencies of their cells in isolation. The most efficient mass-produced solar modules have power density values of up to 175 W/m2 (16.22 W/ft2). The current versus voltage curve of a module provides useful information about its electrical performance. Manufacturing processes often cause differences in the electrical parameters of different modules photovoltaic, even in cells of the same type. Therefore, only the experimental measurement of the I–V curve allows us to accurately establish the electrical parameters of a photovoltaic device. This measurement provides highly relevant information for the design, installation and maintenance of photovoltaic systems. Generally, the electrical parameters of photovoltaic modules are measured by indoor tests. However, outdoor testing has important advantages such as no expensive artificial light source required, no sample size limitation, and more homogeneous sample illumination.
Capacity factor The net capacity factor is the unitless ratio of actual electrical energy output over a given period of time to the theoretical maximum electrical energy output over that period. The theoretical maximum energy output of a given installation is def ...
of solar panels is limited primarily by geographic
latitude In geography, latitude is a geographic coordinate system, geographic coordinate that specifies the north-south position of a point on the surface of the Earth or another celestial body. Latitude is given as an angle that ranges from −90° at t ...
and varies significantly depending on cloud cover, dust, day length and other factors. In the
United Kingdom The United Kingdom of Great Britain and Northern Ireland, commonly known as the United Kingdom (UK) or Britain, is a country in Northwestern Europe, off the coast of European mainland, the continental mainland. It comprises England, Scotlan ...
, seasonal capacity factor ranges from 2% (December) to 20% (July), with average annual capacity factor of 10–11%, while in
Spain Spain, or the Kingdom of Spain, is a country in Southern Europe, Southern and Western Europe with territories in North Africa. Featuring the Punta de Tarifa, southernmost point of continental Europe, it is the largest country in Southern Eur ...
the value reaches 18%. Globally, capacity factor for utility-scale PV farms was 23% in 2019. Overheating is the most important factor for the efficiency of the solar panel.


Radiation-dependent efficiency

Depending on construction, photovoltaic modules can produce electricity from a range of frequencies of light, but usually cannot cover the entire solar radiation range (specifically,
ultraviolet Ultraviolet radiation, also known as simply UV, is electromagnetic radiation of wavelengths of 10–400 nanometers, shorter than that of visible light, but longer than X-rays. UV radiation is present in sunlight and constitutes about 10% of ...
,
infrared Infrared (IR; sometimes called infrared light) is electromagnetic radiation (EMR) with wavelengths longer than that of visible light but shorter than microwaves. The infrared spectral band begins with the waves that are just longer than those ...
and low or diffused light). Hence, much of the incident
sunlight Sunlight is the portion of the electromagnetic radiation which is emitted by the Sun (i.e. solar radiation) and received by the Earth, in particular the visible spectrum, visible light perceptible to the human eye as well as invisible infrare ...
energy is wasted by solar modules, and they can give far higher efficiencies if illuminated with
monochromatic A monochrome or monochromatic image, object or palette is composed of one color (or values of one color). Images using only shades of grey are called grayscale (typically digital) or black-and-white (typically analog). In physics, mon ...
light. Therefore, another design concept is to split the light into six to eight different wavelength ranges that will produce a different color of light, and direct the beams onto different cells tuned to those ranges.


Performance and degradation

Module performance is generally rated under standard test conditions (STC): irradiance of 1,000 W/m2, solar
spectrum A spectrum (: spectra or spectrums) is a set of related ideas, objects, or properties whose features overlap such that they blend to form a continuum. The word ''spectrum'' was first used scientifically in optics to describe the rainbow of co ...
of AM 1.5 and module temperature at 25 °C. The actual voltage and current output of the module changes as lighting, temperature and load conditions change, so there is never one specific voltage at which the module operates. Performance varies depending on geographic location, time of day, the day of the year, amount of
solar irradiance Solar irradiance is the power per unit area (surface power density) received from the Sun in the form of electromagnetic radiation in the wavelength range of the measuring instrument. Solar irradiance is measured in watts per square metre ( ...
, direction and tilt of modules, cloud cover, shading, soiling, state of charge, and temperature. Performance of a module or panel can be measured at different time intervals with a DC clamp meter or shunt and logged, graphed, or charted with a chart recorder or data logger. For optimum performance, a solar panel needs to be made of similar modules oriented in the same direction perpendicular to direct sunlight. Bypass diodes are used to circumvent broken or shaded panels and optimize output. These bypass diodes are usually placed along groups of solar cells to create a continuous flow. Electrical characteristics include nominal power (PMAX, measured in W),
open-circuit voltage Open-circuit voltage (abbreviated as OCV or VOC) is the voltage, difference of electrical potential between two Terminal (electronics), terminals of an electronic device when disconnected from any Electric Circuit, circuit. There is no External ...
(VOC),
short-circuit current A short circuit (sometimes abbreviated to short or s/c) is an electrical network, electrical circuit that allows a Electric current, current to travel along an unintended path with no or very low electrical impedance. This results in an excessiv ...
(ISC, measured in
ampere The ampere ( , ; symbol: A), often shortened to amp,SI supports only the use of symbols and deprecates the use of abbreviations for units. is the unit of electric current in the International System of Units (SI). One ampere is equal to 1 c ...
s), maximum power voltage (VMPP), maximum power current (IMPP), peak power, ( watt-peak, Wp), and module efficiency (%).
Open-circuit voltage Open-circuit voltage (abbreviated as OCV or VOC) is the voltage, difference of electrical potential between two Terminal (electronics), terminals of an electronic device when disconnected from any Electric Circuit, circuit. There is no External ...
or VOC is the maximum voltage the module can produce when not connected to an electrical circuit or system. VOC can be measured with a
voltmeter A voltmeter is an instrument used for measuring electric potential difference between two points in an electric circuit. It is connected in parallel. It usually has a high resistance so that it takes negligible current from the circuit. A ...
directly on an illuminated module's terminals or on its disconnected cable. The peak power rating, Wp, is the maximum output under standard test conditions (not the maximum possible output). Typical modules, which could measure approximately , will be rated from as low as 75 W to as high as 600 W, depending on their efficiency. At the time of testing, the test modules are binned according to their test results, and a typical manufacturer might rate their modules in 5 W increments, and either rate them at +/- 3%, +/-5%, +3/-0% or +5/-0%.


Influence of temperature

The performance of a photovoltaic (PV) module depends on the environmental conditions, mainly on the global incident irradiance G in the plane of the module. However, the temperature T of the p–n junction also influences the main electrical parameters: the short circuit current ISC, the open circuit voltage VOC and the maximum power Pmax. In general, it is known that VOC shows a significant inverse correlation with T, while for ISC this correlation is direct, but weaker, so that this increase does not compensate for the decrease in VOC. As a consequence, Pmax decreases when T increases. This correlation between the power output of a solar cell and the working temperature of its junction depends on the semiconductor material, and is due to the influence of T on the concentration, lifetime, and mobility of the intrinsic carriers, i.e., electrons and gaps. inside the photovoltaic cell. Temperature sensitivity is usually described by temperature coefficients, each of which expresses the derivative of the parameter to which it refers with respect to the junction temperature. The values of these parameters can be found in any data sheet of the photovoltaic module; are the following: - β: VOC variation coefficient with respect to T, given by ∂VOC/∂T. - α: Coefficient of variation of ISC with respect to T, given by ∂ISC/∂T. - δ: Coefficient of variation of Pmax with respect to T, given by ∂Pmax/∂T. Techniques for estimating these coefficients from experimental data can be found in the literature Studies have shown that while high temperatures negatively impact efficiency, colder temperatures can improve solar panel performance due to reduced electrical resistance within the cells. However, winter conditions introduce additional challenges such as snow accumulation and reduced daylight hours, which can offset the efficiency benefits of lower temperatures. Solar panels are still capable of generating power in winter, but overall output may be lower due to limited sunlight exposure and potential obstructions.


Degradation

The ability of solar modules to withstand damage by rain,
hail Hail is a form of solid Precipitation (meteorology), precipitation. It is distinct from ice pellets (American English "sleet"), though the two are often confused. It consists of balls or irregular lumps of ice, each of which is called a hailsto ...
, heavy snow load, and cycles of heat and cold varies by manufacturer, although most solar panels on the U.S. market are UL listed, meaning they have gone through testing to withstand hail. Potential-induced degradation (also called PID) is a potential-induced performance degradation in crystalline photovoltaic modules, caused by so-called stray currents. This effect may cause power loss of up to 30%. Advancements in photovoltaic technologies have brought about the process of "doping" the silicon substrate to lower the activation energy thereby making the panel more efficient in converting photons to retrievable electrons. Chemicals such as
boron Boron is a chemical element; it has symbol B and atomic number 5. In its crystalline form it is a brittle, dark, lustrous metalloid; in its amorphous form it is a brown powder. As the lightest element of the boron group it has three ...
(p-type) are applied into the semiconductor crystal in order to create donor and acceptor energy levels substantially closer to the valence and conductor bands. In doing so, the addition of boron impurity allows the activation energy to decrease twenty-fold from 1.12 eV to 0.05 eV. Since the potential difference (EB) is so low, the boron is able to thermally ionize at room temperatures. This allows for free energy carriers in the conduction and valence bands thereby allowing greater conversion of photons to electrons. The power output of a photovoltaic (PV) device decreases over time. This decrease is due to its exposure to solar radiation as well as other external conditions. The degradation index, which is defined as the annual percentage of output power loss, is a key factor in determining the long-term production of a photovoltaic plant. To estimate this degradation, the percentage of decrease associated with each of the electrical parameters. The individual degradation of a photovoltaic module can significantly influence the performance of a complete string. Furthermore, not all modules in the same installation decrease their performance at exactly the same rate. Given a set of modules exposed to long-term outdoor conditions, the individual degradation of the main electrical parameters and the increase in their dispersion must be considered. As each module tends to degrade differently, the behavior of the modules will be increasingly different over time, negatively affecting the overall performance of the plant. There are several studies dealing with the power degradation analysis of modules based on different photovoltaic technologies available in the literature. According to a recent study, the degradation of crystalline silicon modules is very regular, oscillating between 0.8% and 1.0% per year. On the other hand, if we analyze the performance of thin-film photovoltaic modules, an initial period of strong degradation is observed (which can last several months and even up to 2 years), followed by a later stage in which the degradation stabilizes, being then comparable to that of crystalline silicon. Strong seasonal variations are also observed in such thin-film technologies because the influence of the solar spectrum is much greater. For example, for modules of amorphous silicon, micromorphic silicon or cadmium telluride, we are talking about annual degradation rates for the first years of between 3% and 4%. However, other technologies, such as CIGS, show much lower degradation rates, even in those early years.


Mounting and tracking


Ground

Large utility-scale solar power plants frequently use ground-mounted photovoltaic systems. Their solar modules are held in place by racks or frames that are attached to ground-based mounting supports. Ground based mounting supports include: * Pole mounts, which are driven directly into the ground or embedded in concrete. * Foundation mounts, such as concrete slabs or poured footings * Ballasted footing mounts, such as concrete or steel bases that use weight to secure the solar module system in position and do not require ground penetration. This type of mounting system is well suited for sites where excavation is not possible such as capped landfills and simplifies decommissioning or relocation of solar module systems.


Vertical bifacial solar array

Vertical
bifacial solar cells A bifacial solar cell (BSC) is any photovoltaic solar cell that can produce electrical energy when illuminated on either of its surfaces, front or rear. In contrast, monofacial solar cells produce electrical energy only when photons impinge on ...
are oriented towards east and west to catch the sun's irradiance more efficiently in the morning and evening. Applications include
agrivoltaics Agrivoltaics (agrophotovoltaics, agrisolar, or dual-use solar) is the dual use of land for solar energy and agriculture. The technique was first conceived by Adolf Goetzberger and Armin Zastrow in 1981. Many agricultural activities can be combi ...
, solar fencing, highway and railroad noise dampeners and
barricade Barricade (from the French ''barrique'' - 'barrel') is any object or structure that creates a barrier or obstacle to control, block passage or force the flow of traffic in the desired direction. Adopted as a military term, a barricade denotes ...
s.


Roof

Roof-mounted solar power systems consist of solar modules held in place by racks or frames attached to roof-based mounting supports. Roof-based mounting supports include: * Rail mounts, which are attached directly to the roof structure and may use additional rails for attaching the module racking or frames. * Ballasted footing mounts, such as concrete or steel bases that use weight to secure the panel system in position and do not require through penetration. This mounting method allows for decommissioning or relocation of solar panel systems with no adverse effect on the roof structure. *All wiring connecting adjacent solar modules to the energy harvesting equipment must be installed according to local electrical codes and should be run in a conduit appropriate for the climate conditions


Solar canopy

Solar canopies are solar arrays which are installed on top of a traditional canopy. These canopies could be a parking lot canopy, carport,
gazebo A gazebo is a pavilion structure, sometimes octagonal or Gun turret, turret-shaped, often built in a park, garden, or spacious public area. Some are used on occasions as bandstands. In British English, the word is also used for a tent-like can ...
, Pergola, or patio cover. There are many benefits, which include maximizing the space available in urban areas while also providing shade for cars. The energy produced can be used to create electric vehicle (EV) charging stations.


Portable

Portable solar panels can ensure electric current, enough to charge devices (mobile, radio, ...) via USB-port or to charge a powerbank f.e. Special features of the panels include high flexibility, high durability & waterproof characteristics. They are good for travel or camping.


Tracking

Solar trackers increase the energy produced per module at the cost of mechanical complexity and increased need for maintenance. They sense the direction of the Sun and tilt or rotate the modules as needed for maximum exposure to the light. Alternatively, fixed racks can hold modules stationary throughout the day at a given tilt ( zenith angle) and facing a given direction ( azimuth angle). Tilt angles equivalent to an installation's latitude are common. Some systems may also adjust the tilt angle based on the time of year. On the other hand, east- and west-facing arrays (covering an east–west facing roof, for example) are commonly deployed. Even though such installations will not produce the maximum possible average power from the individual solar panels, the cost of the panels is now usually cheaper than the tracking mechanism and they can provide more economically valuable power during morning and evening peak demands than north or south facing systems.


Maintenance

Solar panel conversion efficiency, typically in the 20% range, is reduced by the accumulation of dust, grime, pollen, and other particulates on the solar panels, collectively referred to as soiling. "A dirty solar panel can reduce its power capabilities by up to 30% in high dust/pollen or desert areas", says Seamus Curran, associate professor of physics at the University of Houston and director of the Institute for NanoEnergy, which specializes in the design, engineering, and assembly of nanostructures. The average soiling loss in the world in 2018 is estimated to be at least 3% – 4%. Paying to have solar panels cleaned is a good investment in many regions, as of 2019. However, in some regions, cleaning is not cost-effective. In California as of 2013 soiling-induced financial losses were rarely enough to warrant the cost of washing the panels. On average, panels in California lost a little less than 0.05% of their overall efficiency per day. There are also occupational hazards with solar panel installation and maintenance. A 2015–2018 study in the UK investigated 80 PV-related incidents of fire, with over 20 "serious fires" directly caused by PV installation, including 37 domestic buildings and 6 solar farms. In of the incidents a root cause was not established and in a majority of others was caused by poor installation, faulty product or design issues. The most frequent single element causing fires was the DC isolators. A 2021 study by kWh Analytics determined median annual degradation of PV systems at 1.09% for residential and 0.8% for non-residential ones, almost twice that previously assumed. A 2021 module reliability study found an increasing trend in solar module failure rates with 30% of manufacturers experiencing safety failures related to junction boxes (growth from 20%) and 26% bill-of-materials failures (growth from 20%).


Cleaning

Cleaning methods for solar panels can be divided into 5 groups: manual tools, mechanized tools (such as tractor mounted brushes), installed hydraulic systems (such as sprinklers), installed robotic systems, and deployable robots. Manual cleaning tools are by far the most prevalent method of cleaning, most likely because of the low purchase cost. However, in a Saudi Arabian study done in 2014, it was found that "installed robotic systems, mechanized systems, and installed hydraulic systems are likely the three most promising technologies for use in cleaning solar panels". Novel self-cleaning mechanisms for solar panels are being developed. For instance, in 2019 via wet-chemically etched
nanowires upright=1.2, Crystalline 2×2-atom tin selenide nanowire grown inside a single-wall carbon nanotube (tube diameter ≈1 nm). A nanowire is a nanostructure in the form of a wire with the diameter of the order of a nanometre (10−9 m). Mor ...
and a hydrophobic coating on the surface water droplets could remove 98% of dust particles, which may be especially relevant for applications in the desert. In March 2022,
MIT The Massachusetts Institute of Technology (MIT) is a private research university in Cambridge, Massachusetts, United States. Established in 1861, MIT has played a significant role in the development of many areas of modern technology and sc ...
researchers announced the development of a waterless cleaning system for solar panels and mirrors to address the issue of dust accumulation, which can reduce solar output by up to 30 percent in one month. This system utilizes electrostatic repulsion to detach dust particles from the panel's surface, eliminating the need for water or brushes. An electrical charge imparted to the dust particles by passing a simple electrode over the panel causes them to be repelled by a charge applied to the panel itself. The system can be automated using a basic electric motor and guide rails.


Waste and recycling

There were 30 thousand tonnes of PV waste in 2021, and the annual amount was estimated by Bloomberg NEF to rise to more than 1 million tons by 2035 and more than 10 million by 2050. For comparison, 750 million tons of
fly ash Coal combustion products (CCPs), also called coal combustion wastes (CCWs) or coal combustion residuals (CCRs), are byproducts of burning coal. They are categorized in four groups, each based on physical and chemical forms derived from coal combust ...
waste was produced by coal power in 2022. In the United States, around 90% of decommissioned solar panels end up in landfills as of 2023. Most parts of a solar module can be recycled including up to 95% of certain semiconductor materials or the glass as well as large amounts of ferrous and non-ferrous metals. Some private companies and non-profit organizations take-back and recycle end-of-life modules. EU law requires manufacturers to ensure their solar panels are recycled properly. Similar legislation is underway in
Japan Japan is an island country in East Asia. Located in the Pacific Ocean off the northeast coast of the Asia, Asian mainland, it is bordered on the west by the Sea of Japan and extends from the Sea of Okhotsk in the north to the East China Sea ...
,
India India, officially the Republic of India, is a country in South Asia. It is the List of countries and dependencies by area, seventh-largest country by area; the List of countries by population (United Nations), most populous country since ...
, and
Australia Australia, officially the Commonwealth of Australia, is a country comprising mainland Australia, the mainland of the Australia (continent), Australian continent, the island of Tasmania and list of islands of Australia, numerous smaller isl ...
. A 2023 Australian report said that there is a market for quality used panels and made recommendations for increasing reuse. Recycling possibilities depend on the kind of technology used in the modules: * Silicon based modules: aluminum frames and junction boxes are dismantled manually at the beginning of the process. The module is then crushed in a mill and the different fractions are separated – glass, plastics and metals. It is possible to recover more than 80% of the incoming weight. This process can be performed by flat glass recyclers, since the shape and composition of a PV module is similar to flat glass used in the building and automotive industry. The recovered glass, for example, is readily accepted by the glass foam and glass insulation industry. * Non-silicon based modules: they require specific recycling technologies such as the use of chemical baths in order to separate the different semiconductor materials. For cadmium telluride modules, the recycling process begins by crushing the module and subsequently separating the different fractions. This recycling process is designed to recover up to 90% of the glass and 95% of the semiconductor materials contained. Some commercial-scale recycling facilities have been created in recent years by private companies. Since 2010, there is an annual European conference bringing together manufacturers, recyclers and researchers to look at the future of PV module recycling.


Production

The production of PV systems has followed a classic
learning curve A learning curve is a graphical representation of the relationship between how proficient people are at a task and the amount of experience they have. Proficiency (measured on the vertical axis) usually increases with increased experience (the ...
effect, with significant cost reduction occurring alongside large rises in efficiency and production output. With over 100% year-on-year growth in PV system installation, PV module makers dramatically increased their shipments of solar modules in 2019. They actively expanded their capacity and turned themselves into gigawatt GW players. According to Pulse Solar, five of the top ten PV module companies in 2019 have experienced a rise in solar panel production by at least 25% compared to 2019. The basis of producing most solar panels is mostly on the use of silicon cells. These silicon cells are typically 10–20% efficient at converting sunlight into electricity, with newer production models exceeding 22%. In 2018, the world's top five solar module producers in terms of shipped capacity during the calendar year of 2018 were Jinko Solar, JA Solar, Trina Solar, Longi solar, and Canadian Solar.


Price

The price of solar electrical power has continued to fall so that in many countries it has become cheaper than
fossil fuel A fossil fuel is a flammable carbon compound- or hydrocarbon-containing material formed naturally in the Earth's crust from the buried remains of prehistoric organisms (animals, plants or microplanktons), a process that occurs within geolog ...
electricity from the electricity grid since 2012, a phenomenon known as grid parity. With the rise of global awareness, institutions such as the
IRS The Internal Revenue Service (IRS) is the revenue service for the Federal government of the United States, United States federal government, which is responsible for collecting Taxation in the United States, U.S. federal taxes and administerin ...
have adopted a tax credit format, refunding a portion of any solar panel array for private use. The price of a solar array only continues to fall. Average pricing information divides in three pricing categories: those buying small quantities (modules of all sizes in the kilowatt range annually), mid-range buyers (typically up to 10 MWp annually), and large quantity buyers (self-explanatory—and with access to the lowest prices). Over the long term there is clearly a systematic reduction in the price of cells and modules. For example, in 2012 it was estimated that the quantity cost per watt was about US$0.60, which was 250 times lower than the cost in 1970 of US$150. A 2015 study shows price/kWh dropping by 10% per year since 1980, and predicts that solar could contribute 20% of total electricity consumption by 2030, whereas the
International Energy Agency The International Energy Agency (IEA) is a Paris-based autonomous intergovernmental organization, established in 1974, that provides policy recommendations, analysis and data on the global energy sector. The 31 member countries and 13 associatio ...
predicts 16% by 2050. Real-world energy production costs depend a great deal on local weather conditions. In a cloudy country such as the United Kingdom, the cost per produced kWh is higher than in sunnier countries like Spain. Following to RMI, Balance-of-System (BoS) elements, this is, non-module cost of non- microinverter solar modules (as wiring, converters, racking systems and various components) make up about half of the total costs of installations. For merchant solar power stations, where the electricity is being sold into the electricity transmission network, the cost of
solar energy Solar energy is the radiant energy from the Sun's sunlight, light and heat, which can be harnessed using a range of technologies such as solar electricity, solar thermal energy (including solar water heating) and solar architecture. It is a ...
will need to match the wholesale electricity price. This point is sometimes called 'wholesale grid parity' or 'busbar parity'.


Standards

Standards generally used in photovoltaic modules: * IEC 61215 (
crystalline silicon Crystalline silicon or (c-Si) is the crystalline forms of silicon, either polycrystalline silicon (poly-Si, consisting of small crystals), or monocrystalline silicon (mono-Si, a continuous crystal). Crystalline silicon is the dominant semicon ...
performance), 61646 (
thin film A thin film is a layer of materials ranging from fractions of a nanometer ( monolayer) to several micrometers in thickness. The controlled synthesis of materials as thin films (a process referred to as deposition) is a fundamental step in many ...
performance) and 61730 (all modules, safety), 61853 (Photovoltaic module performance testing & energy rating) * ISO 9488 Solar energy—Vocabulary. * UL 1703 from
Underwriters Laboratories The UL enterprise is a global private safety company headquartered in Northbrook, Illinois, composed of three organizations, UL Research Institutes, UL Standards & Engagement and UL Solutions. Established in 1894, the UL enterprise was founded a ...
* UL 1741 from Underwriters Laboratories * UL 2703 from Underwriters Laboratories *
CE mark The presence of the logo on Product (business), commercial products indicates that the Manufacturing, manufacturer or importer affirms the goods' conformity with European Environment, health and safety, health, safety, and environmental prote ...
* Electrical Safety Tester (EST) Series (EST-460, EST-22V, EST-22H, EST-110).


Applications

There are many practical applications for the use of solar panels or photovoltaics. It can first be used in agriculture as a power source for irrigation. In health care solar panels can be used to refrigerate medical supplies. It can also be used for infrastructure. PV modules are used in
photovoltaic system A photovoltaic system, also called a PV system or solar power system, is an electric power system designed to supply usable solar power by means of photovoltaics. It consists of an arrangement of several components, including solar panels to abso ...
s and include a large variety of electric devices: *
Agrivoltaics Agrivoltaics (agrophotovoltaics, agrisolar, or dual-use solar) is the dual use of land for solar energy and agriculture. The technique was first conceived by Adolf Goetzberger and Armin Zastrow in 1981. Many agricultural activities can be combi ...
* Solar canals *
Photovoltaic power station A photovoltaic power station, also known as a solar park, solar farm, or solar power plant, is a large-scale grid-connected photovoltaic power system (PV system) designed for the supply of merchant power. They are different from most building ...
s * Rooftop solar PV systems * Standalone PV systems * Solar hybrid power systems *
Concentrated photovoltaics Concentrator photovoltaics (CPV) (also known as concentrating photovoltaics or concentration photovoltaics) is a photovoltaic technology that generates electricity from sunlight. Unlike conventional photovoltaic systems, it uses lenses or cur ...
* Floating solar; water-borne solar panels * Solar planes * Solar-powered
water purification Water purification is the process of removing undesirable chemicals, biological contaminants, suspended solids, and gases from water. The goal is to produce water that is fit for specific purposes. Most water is purified and disinfected for hu ...
* Solar-pumped lasers * Solar vehicles *
Solar water heating Solar water heating (SWH) is water heating, heating water by sunlight, using a solar thermal collector. A variety of configurations are available at varying cost to provide solutions in different climates and latitudes. SWHs are widely used for ...
* Solar panels on spacecraft and
space station A space station (or orbital station) is a spacecraft which remains orbital spaceflight, in orbit and human spaceflight, hosts humans for extended periods of time. It therefore is an artificial satellite featuring space habitat (facility), habitat ...
s * Solar landfill


Limitations


Impact on electricity network

With the increasing levels of rooftop photovoltaic systems, the energy flow becomes 2-way. When there is more local generation than consumption, electricity is exported to the grid. However, an electricity network traditionally is not designed to deal with the 2- way energy transfer. Therefore, some technical issues may occur. For example, in Queensland Australia, more than 30% of households used rooftop PV by the end of 2017. The duck curve appeared often for a lot of communities from 2015 onwards. An over-voltage issue may result as the electricity flows from PV households back to the network. There are solutions to manage the over voltage issue, such as regulating PV inverter power factor, new voltage and energy control equipment at the electricity distributor level, re-conducting the electricity wires, demand side management, etc. There are often limitations and costs related to these solutions. For rooftop solar to be able to provide enough backup power during a power cut a battery is often also required.


Quality assurance

Solar module quality assurance involves testing and evaluating
solar cells A solar cell, also known as a photovoltaic cell (PV cell), is an electronic device that converts the energy of light directly into electricity by means of the photovoltaic effect.
and Solar Panels to ensure the quality requirements of them are met. Solar modules (or panels) are expected to have a long service life between 20 and 40 years. They should continually and reliably convey and deliver the power anticipated. Solar modules can be tested through a combination of physical tests,
laboratory A laboratory (; ; colloquially lab) is a facility that provides controlled conditions in which scientific or technological research, experiments, and measurement may be performed. Laboratories are found in a variety of settings such as schools ...
studies, and numerical analyses. Furthermore, solar modules need to be assessed throughout the different stages of their life cycle. Various companies such as Southern Research Energy & Environment, SGS Consumer Testing Services, TÜV Rheinland, Sinovoltaics, Clean Energy Associates (CEA), CSA Solar International and Enertis provide services in solar module quality assurance."The implementation of consistent traceable and stable manufacturing processes becomes mandatory to safeguard and ensure the quality of the PV Modules"


Stages of testing

The lifecycle stages of testing solar modules can include: the conceptual phase,
manufacturing Manufacturing is the creation or production of goods with the help of equipment, labor, machines, tools, and chemical or biological processing or formulation. It is the essence of the secondary sector of the economy. The term may refer ...
phase,
transportation Transport (in British English) or transportation (in American English) is the intentional Motion, movement of humans, animals, and cargo, goods from one location to another. Mode of transport, Modes of transport include aviation, air, land tr ...
and installation, commissioning phase, and the in-service phase. Depending on the test phase, different test principles may apply.


Conceptual phase

The first stage can involve design verification where the expected output of the module is tested through
computer simulation Computer simulation is the running of a mathematical model on a computer, the model being designed to represent the behaviour of, or the outcome of, a real-world or physical system. The reliability of some mathematical models can be determin ...
. Further, the modules ability to withstand natural environment conditions such as
temperature Temperature is a physical quantity that quantitatively expresses the attribute of hotness or coldness. Temperature is measurement, measured with a thermometer. It reflects the average kinetic energy of the vibrating and colliding atoms making ...
,
rain Rain is a form of precipitation where water drop (liquid), droplets that have condensation, condensed from Water vapor#In Earth's atmosphere, atmospheric water vapor fall under gravity. Rain is a major component of the water cycle and is res ...
,
hail Hail is a form of solid Precipitation (meteorology), precipitation. It is distinct from ice pellets (American English "sleet"), though the two are often confused. It consists of balls or irregular lumps of ice, each of which is called a hailsto ...
,
snow Snow consists of individual ice crystals that grow while suspended in the atmosphere—usually within clouds—and then fall, accumulating on the ground where they undergo further changes. It consists of frozen crystalline water througho ...
,
corrosion Corrosion is a natural process that converts a refined metal into a more chemically stable oxide. It is the gradual deterioration of materials (usually a metal) by chemical or electrochemical reaction with their environment. Corrosion engine ...
,
dust Dust is made of particle size, fine particles of solid matter. On Earth, it generally consists of particles in the atmosphere that come from various sources such as soil lifted by wind (an aeolian processes, aeolian process), Types of volcan ...
,
lightning Lightning is a natural phenomenon consisting of electrostatic discharges occurring through the atmosphere between two electrically charged regions. One or both regions are within the atmosphere, with the second region sometimes occurring on ...
,
horizon The horizon is the apparent curve that separates the surface of a celestial body from its sky when viewed from the perspective of an observer on or near the surface of the relevant body. This curve divides all viewing directions based on whethe ...
and near-shadow effects is tested. The layout for
design A design is the concept or proposal for an object, process, or system. The word ''design'' refers to something that is or has been intentionally created by a thinking agent, and is sometimes used to refer to the inherent nature of something ...
and
construction Construction are processes involved in delivering buildings, infrastructure, industrial facilities, and associated activities through to the end of their life. It typically starts with planning, financing, and design that continues until the a ...
of the module and the quality of components and installation can also be tested at this stage.


Manufacturing phase

Inspecting manufacturers of components is carried through visitation. The inspection can include assembly checks, material testing supervision and Non Destructive Testing (NDT). Certification is carried out according to ANSI/UL1703, IEC 17025, IEC 61215, IEC 61646, IEC 61701 and IEC 61730-1/-2.


See also

* Daisy chain (electrical engineering) * Digital modeling and fabrication * Domestic energy consumption * Grid-tied electrical system * Growth of photovoltaics * Solar charger * Solar cooker *
Solar still A solar still distillation, distills water with substances dissolved in it by using the Solar energy, heat of the Sun to evaporate water so that it may be cooled and collected, thereby purifying it. They are used in areas where drinking water is ...


References

{{DEFAULTSORT:Solar Panel Photovoltaics Panel Smart devices Solar power