Short message peer-to-peer protocol
   HOME

TheInfoList



OR:

Short Message Peer-to-Peer (SMPP) in the telecommunications industry is an open, industry standard protocol designed to provide a flexible data communication interface for the transfer of short message data between External Short Messaging Entities (ESMEs), Routing Entities (REs) and SMSC. SMPP is often used to allow third parties (e.g.
value-added service provider A value-added service (VAS) is a popular telecommunications industry{{cite web, url=http://www.prweb.com/releases/2013/11/prweb11284640.htm, title=Global Mobile Value Added Services (VAS) Market: Worldwide Industry Share, Investment Trends, Growth, ...
s like news organizations) to submit messages, often in bulk, but it may be used for SMS peering as well. SMPP is able to carry short messages including EMS, voicemail notifications,
Cell Broadcast Cell Broadcast (CB) is a method of sending messages to multiple mobile telephone users in a defined area at the same time. It is defined by the ETSI’s GSM committee and 3GPP and is part of the 2G, 3G, 4G LTE (telecommunication) and 5G s ...
s,
WAP WAP or Wap may refer to: Music * "WAP" (song), a 2020 song by Cardi B featuring Megan Thee Stallion Organizations * Weatherization Assistance Program, for US energy costs * Western Australia Party, a political party founded in 2016 * Western A ...
messages including WAP Push messages (used to deliver
MMS MMS may refer to: Science and technology Network communication protocols * Multimedia Messaging Service for mobile phones * Microsoft Media Server, a content-streaming protocol (mms://) * Manufacturing Message Specification for real time proces ...
notifications), USSD messages and others. Because of its versatility and support for non- GSM SMS protocols, like UMTS, IS-95 (CDMA),
CDMA2000 CDMA2000 (also known as C2K or IMT Multi‑Carrier (IMT‑MC)) is a family of 3G mobile technology standards for sending voice, data, and signaling data between mobile phones and cell sites. It is developed by 3GPP2 as a backwards-compatible ...
, ANSI-136 (TDMA) and
iDEN Integrated Digital Enhanced Network (iDEN) is a mobile telecommunications technology, developed by Motorola, which provides its users the benefits of a trunked radio and a cellular telephone. It was called the first mobile social network by ma ...
, SMPP is the most commonly used protocol for short message exchange outside SS7 networks.


History

SMPP (Short Message Peer-to-Peer) was originally designed by Aldiscon, a small Irish company that was later acquired by Logica (since 2016, after a number of changes Mavenir). The protocol was originally created by a developer, Ian J Chambers, to test the functionality of the SMSC without using SS7 test equipment to submit messages. In 1999, Logica formally handed over SMPP to the SMPP Developers Forum, later renamed as The SMS Forum and now disbanded. As part of the original handover terms, SMPP ownership has now returned to Mavenir due to the disbanding of the SMS Forum. To date, SMPP development is suspended and SMS Forum is disbanded. From the SMS Forum website:
July 31, 2007 - The SMS Forum, a non-profit organization with a mission to develop, foster and promote SMS (short message service) to the benefit of the global wireless industry will disband by July 27, 2007.
A press release, attached to the news, used to warn that site will be suspended soon. In spite of this, the site was mostly functioning and specifications could be downloaded (as of 31 January 2012). As of 12 April 2021, the website owner has changed and the specifications can be download from mirror sites only. In 1995 the
ETSI The European Telecommunications Standards Institute (ETSI) is an independent, not-for-profit, standardization organization in the field of information and communications. ETSI supports the development and testing of global technical standard ...
has included the SMPP protocol into the technical report TR 03.39.


Operation

Contrary to its name, the SMPP uses the client–server model of operation. The Short Message Service Center (SMSC) usually acts as a server, awaiting connections from ESMEs. When SMPP is used for SMS peering, the sending MC usually acts as a client. The protocol is based on pairs of request/response PDUs ( protocol data units, or packets) exchanged over
OSI OSI may refer to: Places * Osijek Airport (IATA code: OSI), an airport in Croatia * Ősi, a village in Veszprém county, Hungary * Oši, an archaeological site in Semigallia, Latvia * Osi, a village in Ido-Osi, Ekiti State, Nigeria * Osi, Ekiti ...
layer 4 (
TCP TCP may refer to: Science and technology * Transformer coupled plasma * Tool Center Point, see Robot end effector Computing * Transmission Control Protocol, a fundamental Internet standard * Telephony control protocol, a Bluetooth communication s ...
session or
X.25 X.25 is an ITU-T standard protocol suite for packet-switched data communication in wide area networks (WAN). It was originally defined by the International Telegraph and Telephone Consultative Committee (CCITT, now ITU-T) in a series of drafts a ...
SVC3) connections. The well-known port assigned by the
IANA The Internet Assigned Numbers Authority (IANA) is a standards organization that oversees global IP address allocation, autonomous system number allocation, root zone management in the Domain Name System (DNS), media types, and other Interne ...
for SMPP when operating over
TCP TCP may refer to: Science and technology * Transformer coupled plasma * Tool Center Point, see Robot end effector Computing * Transmission Control Protocol, a fundamental Internet standard * Telephony control protocol, a Bluetooth communication s ...
is 2775, but multiple arbitrary port numbers are often used in messaging environments. Before exchanging any messages, a bind command must be sent and acknowledged. The bind command determines in which direction will be possible to send messages; bind_transmitter only allows client to submit messages to the server, bind_receiver means that the client will only receive the messages, and bind_transceiver (introduced in SMPP 3.4) allows message transfer in both directions. In the bind command the ESME identifies itself using system_id, system_type and password; the address_range field designed to contain ESME address is usually left empty. The bind command contains interface_version parameter to specify which version of SMPP protocol will be used. Message exchange may be synchronous, where each peer waits for a response for each PDU being sent, or asynchronous, where multiple requests can be issued without waiting and acknowledged in a skew order by the other peer; the number of unacknowledged requests is called a ''window''; for the best performance both communicating sides must be configured with the same window size.


Versions

The SMPP standard has evolved during the time. The most commonly used versions of SMPP are: * SMPP 3.3 the oldest used version (despite its limitations, it is still widely used); supports GSM only. Generates an immediate response for each message sent. * SMPP 3.4 adds optional tag–length–value (TLV) parameters, support of non-GSM SMS technologies and the transceiver support (single connections that can send and receive messages). The exchange of SMPP request and response PDUs between an ESME Transmitter and SMSC may occur synchronously or asynchronously. * SMPP 5.0 is the latest version of SMPP; adds support for cell broadcasting, smart flow control. As of 2019, it is not widely used. The applicable version is passed in the interface_version parameter of a bind command.


PDU format (after version 3.4)

The SMPP PDUs are binary encoded for efficiency. They start with a header which may be followed by a body:


PDU header

Each PDU starts with a header. The header consists of 4 fields, each of length of 4 octets: ;command_length: Is the overall length of the PDU in octets (including command_length field itself); must be ≥ 16 as each PDU must contain the 16 octet header ;command_id: Identifies the SMPP operation (or command). If the most significant bit is cleared, this is a request operation. Otherwise it is a response. ;command_status: Always has a value of 0 in requests; in responses it carries information about the result of the operation ;sequence_number: Is used to correlate requests and responses within an SMPP session; allows asynchronous communication (using a sliding window method) All numeric fields in SMPP use the
big endian In computing, endianness, also known as byte sex, is the order or sequence of bytes of a word of digital data in computer memory. Endianness is primarily expressed as big-endian (BE) or little-endian (LE). A big-endian system stores the most sig ...
order, which means that the first octet is the Most Significant Byte (MSB).


Example

This is an example of the binary encoding of a 60-octet ''submit_sm'' PDU. The data is shown in Hex octet values as a single dump and followed by a header and body break-down of that PDU. This is best compared with the definition of the submit_sm PDU from the SMPP specification in order to understand how the encoding matches the field by field definition. The value break-downs are shown with decimal in parentheses and Hex values after that. Where you see one or several hex octets appended, this is because the given field size uses 1 or more octets encoding. Again, reading the definition of the submit_sm PDU from the spec will make all this clearer.


PDU header

'command_length', (60) ... 00 00 00 3C 'command_id', (4) ... 00 00 00 04 'command_status', (0) ... 00 00 00 00 'sequence_number', (5) ... 00 00 00 05


PDU body

'service_type', () ... 00 'source_addr_ton', (2) ... 02 'source_addr_ npi', (8) ... 08 'source_addr', (555) ... 35 35 35 00 'dest_addr_ton', (1) ... 01 'dest_addr_ npi', (1) ... 01 'dest_addr', (555555555) ... 35 35 35 35 35 35 35 35 35 00 'esm_class', (0) ... 00 'protocol_id', (0) ... 00 'priority_flag', (0) ... 00 'schedule_delivery_time', (0) ... 00 'validity_period', (0) ... 00 'registered_delivery', (0) ... 00 'replace_if_present_flag', (0) ... 00 'data_coding', (3) ... 03 'sm_default_msg_id', (0) ... 00 'sm_length', (15) ... 0F 'short_message', (Hello Wikipedia) ... 48 65 6C 6C 6F 20 57 69 6B 69 70 65 64 69 61 Note that the text in the short_message field must match the data_coding. When the data_coding is 8 (UCS2), the text must be in UCS-2BE (or its extension,
UTF-16BE UTF-16 (16-bit Unicode Transformation Format) is a character encoding capable of encoding all 1,112,064 valid code points of Unicode (in fact this number of code points is dictated by the design of UTF-16). The encoding is variable-length, as cod ...
). When the data_coding indicates a 7-bit encoding, each septet is stored in a separate octet in the short_message field (with the most significant bit set to 0). SMPP 3.3 data_coding exactly copied TP-DCS values of
GSM 03.38 In mobile telephony GSM 03.38 or 3GPP 23.038 is a character encoding used in GSM networks for SMS (Short Message Service), CB (Cell Broadcast) and USSD (Unstructured Supplementary Service Data). The 3GPP TS 23.038 standard (originally GSM recommend ...
, which make it suitable only for GSM 7-bit default alphabet, UCS2 or binary messages; SMPP 3.4 introduced a new list of data_coding values: The meaning of the data_coding=4 or 8 is the same as in SMPP 3.3. Other values in the range 1-15 are reserved in SMPP 3.3. Unfortunately, unlike SMPP 3.3, where data_coding=0 was unambiguously GSM 7-bit default alphabet, for SMPP 3.4 and higher the GSM 7-bit default alphabet is missing in this list, and data_coding=0 may differ for various Short message service centers—it may be
ISO-8859-1 ISO/IEC 8859-1:1998, ''Information technology — 8-bit single-byte coded graphic character sets — Part 1: Latin alphabet No. 1'', is part of the ISO/IEC 8859 series of ASCII-based standard character encodings, first edition published in 1 ...
, ASCII, GSM 7-bit default alphabet, UTF-8 or even configurable per ESME. When using data_coding=0, both sides (ESME and SMSC) must be sure they consider it the same encoding. Otherwise it is better not to use data_coding=0. It may be tricky to use the GSM 7-bit default alphabet, some Short message service centers requires data_coding=0, others e.g. data_coding=241.


Quirks

Despite its wide acceptance, the SMPP has a number of problematic features: * No data_coding for GSM 7-bit default alphabet * Not standardized meaning of data_coding=0 * Unclear support for Shift-JIS encoding * Incompatibility of submit_sm_resp between SMPP versions * Using of SMPP 3.3 SMSC Delivery Receipts, especially the Message Id format in them


No data_coding for GSM 7-bit default alphabet

Although data_coding value in SMPP 3.3 are based on the
GSM 03.38 In mobile telephony GSM 03.38 or 3GPP 23.038 is a character encoding used in GSM networks for SMS (Short Message Service), CB (Cell Broadcast) and USSD (Unstructured Supplementary Service Data). The 3GPP TS 23.038 standard (originally GSM recommend ...
, since SMPP 3.4 there is no data_coding value for GSM 7-bit alphabet (
GSM 03.38 In mobile telephony GSM 03.38 or 3GPP 23.038 is a character encoding used in GSM networks for SMS (Short Message Service), CB (Cell Broadcast) and USSD (Unstructured Supplementary Service Data). The 3GPP TS 23.038 standard (originally GSM recommend ...
). However, it is common for DCS=0 to indicate the GSM 7-bit alphabet, particularly for SMPP connections to SMSCs on GSM mobile networks. It is further ambiguous whether the 7-bit alphabet is packed, as in GSM, allowing sending 160 characters in 140 octets, or whether the each 7-bit character takes up an entire octet (with the high bit set to zero, as with ASCII).


Not standardized meaning of data_coding=0

According to SMPP 3.4 and 5.0 the data_coding=0 means ″SMSC Default Alphabet″. Which encoding it really is, depends on the type of the SMSC and its configuration.


Unclear support for Shift-JIS encoding

One of the encodings in CDMA standard C.R1001 is
Shift-JIS Shift JIS (Shift Japanese Industrial Standards, also SJIS, MIME name Shift_JIS, known as PCK in Solaris contexts) is a character encoding for the Japanese language, originally developed by a Japanese company called ASCII Corporation in conjunct ...
used for Japanese. SMPP 3.4 and 5.0 specifies three encodings for Japanese (JIS, ISO-2022-JP and Extended Kanji JIS), but none of them is identical with CDMA MSG_ENCODING 00101. It seems that the Pictogram encoding (data_coding=9) is used to carry the messages in Shift-JIS in SMPP.


Incompatibility of submit_sm_resp between SMPP versions

When a submit_sm fails, the SMSC returns a submit_sm_resp with non-zero value of command_status and ″empty″ message_id. * SMPP 3.3 explicitly states about the message_id field ″If absent this field must contain a single NULL byte″. The length of the PDU is at least 17 octets. * SMPP 3.4 contains an unfortunate note in the SUBMIT_SM_RESP section ″The submit_sm_resp PDU Body is not returned if the command_status field contains a non-zero value.″ Then the length of the PDU is 16 octets. * SMPP 5.0 just specifies that message_id is a mandatory parameter of the type C-Octet string of the submit_sm_resp message. According to the section 3.1.1 NULL Settings, ″A NULL string ″″ is encoded as 0x00″. The length of the PDU is at least 17 octets. For the best compatibility, any SMPP implementation should accept both variants of negative submit_sm_resp regardless of the version of SMPP standard used for the communication.


Message ID in SMPP 3.3 SMSC Delivery Receipts

The only way to pass delivery receipts in SMPP 3.3 is to put information in a text form to the short_message field; however, the format of the text is described in Appendix B of SMPP 3.4, although SMPP 3.4 may (and should) use receipted_message_id and message_state TLVs for the purpose. While SMPP 3.3 states that Message ID is a C-Octet String (Hex) of up to 8 characters (plus terminating '\0'), the SMPP 3.4 specification states that the id field in the Delivery Receipt Format is a C-Octet String (Decimal) of up to 10 characters. This splits SMPP implementations to 2 groups: * Implementations using the decimal representation of an integer Message Id in the id field of the Delivery Receipt body and the hexadecimal representation of an integer Message Id in message_id and receipted_message_id fields * Implementations using the same hexadecimal number (or even the same arbitrary string) both in message_id parameter and in the id field of the Delivery Receipt body The SMPP 3.4 specification does however state that the delivery receipt format is SMSC vendor specific, and therefore the format included in the specification is merely one possibility. As noted above, when using SMPP 3.4 receipted_message_id and message_state TLVs should be used to convey the outcome of a message.


Extensibility, compatibility and interoperability

Since introduction of TLV parameters in version 3.4, the SMPP may be regarded an
extensible Extensibility is a software engineering and systems design principle that provides for future growth. Extensibility is a measure of the ability to extend a system and the level of effort required to implement the extension. Extensions can be th ...
protocol. In order to achieve the highest possible degree of compatibility and interoperability any implementation should apply the Internet
robustness principle In computing, the robustness principle is a design guideline for software that states: "be conservative in what you do, be liberal in what you accept from others". It is often reworded as: "be conservative in what you send, be liberal in what you a ...
: ″Be conservative in what you send, be liberal in what you accept″. It should use a minimal set of features which are necessary to accomplish a task. And if the goal is communication and not quibbling, each implementation should overcome minor nonconformities with standard: * Respond with a generic_nack with command_status=3 to any unrecognised SMPP command, but do not stop the communication. * Ignore any unrecognised, unexpected or unsupported TLV parameters. * The borders of PDUs are always given by the PDUs' command_length field. Any message field must not exceed the end of PDU. If a field is not properly finished, it should be treated as truncated at the end of PDU, and it should not affect further PDUs. Information applicable to one version of SMPP can often be found in another version of SMPP, for example with the case of SMPP 3.4 describing the only mechanism of delivery receipts in SMPP 3.3 described above.


Security

The SMPP protocol is designed on a clear-text binary protocol which needs to be considered if using for potentially sensitive information such as one-time passwords via SMS. There are, however, implementations of SMPP over secure SSL/TLS if required."Secure Short Message Peer-to-Peer Protocol"
International Journal of Electronic Commerce Studies, 2012


See also

* Universal Computer Protocol/External Machine Interface (UCP/EMI) * Computer Interface for Message Distribution (CIMD) * Rich Communication Services


References


External links


SMPP implemented in JavaSMPP Wireshark
{{DEFAULTSORT:Short Message Peer-To-Peer Protocol GSM standard Mobile technology Network protocols