Relativistic nuclear collisions
   HOME

TheInfoList



OR:

High-energy nuclear physics studies the behavior of nuclear matter in energy regimes typical of
high-energy physics Particle physics or high energy physics is the study of fundamental particles and forces that constitute matter and radiation. The fundamental particles in the universe are classified in the Standard Model as fermions (matter particles) a ...
. The primary focus of this field is the study of heavy-ion collisions, as compared to lighter atoms in other particle accelerators. At sufficient collision energies, these types of collisions are theorized to produce the
quark–gluon plasma Quark–gluon plasma (QGP) or quark soup is an interacting localized assembly of quarks and gluons at thermal (local kinetic) and (close to) chemical (abundance) equilibrium. The word ''plasma'' signals that free color charges are allowed. In a ...
. In peripheral nuclear collisions at high energies one expects to obtain information on the electromagnetic production of leptons and mesons that are not accessible in electron–positron colliders due to their much smaller luminosities. Previous high-energy nuclear accelerator experiments have studied heavy-ion collisions using projectile energies of 1 GeV/nucleon at
JINR The Joint Institute for Nuclear Research (JINR, russian: Объединённый институт ядерных исследований, ОИЯИ), in Dubna, Moscow Oblast (110 km north of Moscow), Russia, is an international research ce ...
and LBNL-Bevalac up to 158 GeV/nucleon at CERN-SPS. Experiments of this type, called "fixed-target" experiments, primarily accelerate a "bunch" of ions (typically around 106 to 108 ions per bunch) to speeds approaching the
speed of light The speed of light in vacuum, commonly denoted , is a universal physical constant that is important in many areas of physics. The speed of light is exactly equal to ). According to the special theory of relativity, is the upper limit ...
(0.999''c'') and smash them into a target of similar heavy ions. While all collision systems are interesting, great focus was applied in the late 1990s to symmetric collision systems of
gold Gold is a chemical element with the symbol Au (from la, aurum) and atomic number 79. This makes it one of the higher atomic number elements that occur naturally. It is a bright, slightly orange-yellow, dense, soft, malleable, and ductile me ...
beams on gold targets at
Brookhaven National Laboratory Brookhaven National Laboratory (BNL) is a United States Department of Energy national laboratory located in Upton, Long Island, and was formally established in 1947 at the site of Camp Upton, a former U.S. Army base and Japanese internment c ...
's
Alternating Gradient Synchrotron The Alternating Gradient Synchrotron (AGS) is a particle accelerator located at the Brookhaven National Laboratory in Long Island, New York, United States. The Alternating Gradient Synchrotron was built on the innovative concept of the alterna ...
(AGS) and
uranium Uranium is a chemical element with the symbol U and atomic number 92. It is a silvery-grey metal in the actinide series of the periodic table. A uranium atom has 92 protons and 92 electrons, of which 6 are valence electrons. Uranium is weak ...
beams on uranium targets at CERN's Super Proton Synchrotron. High-energy nuclear physics experiments are continued at the
Brookhaven National Laboratory Brookhaven National Laboratory (BNL) is a United States Department of Energy national laboratory located in Upton, Long Island, and was formally established in 1947 at the site of Camp Upton, a former U.S. Army base and Japanese internment c ...
's Relativistic Heavy Ion Collider (RHIC) and at the CERN Large Hadron Collider. At RHIC the programme began with four experiments— PHENIX, STAR, PHOBOS, and BRAHMS—all dedicated to study collisions of highly relativistic nuclei. Unlike fixed-target experiments, collider experiments steer two accelerated beams of ions toward each other at (in the case of RHIC) six interaction regions. At RHIC, ions can be accelerated (depending on the ion size) from 100 GeV/nucleon to 250 GeV/nucleon. Since each colliding ion possesses this energy moving in opposite directions, the maximal energy of the collisions can achieve a center-of-mass collision energy of 200 GeV/nucleon for gold and 500 GeV/nucleon for protons. The ALICE (A Large Ion Collider Experiment) detector at the LHC at CERN is specialized in studying Pb–Pb nuclei collisions at a center-of-mass energy of 2.76 TeV per nucleon pair. All major LHC detectors—ALICE,
ATLAS An atlas is a collection of maps; it is typically a bundle of maps of Earth or of a region of Earth. Atlases have traditionally been bound into book form, but today many atlases are in multimedia formats. In addition to presenting geograp ...
, CMS and
LHCb The LHCb (Large Hadron Collider beauty) experiment is one of eight particle physics detector experiments collecting data at the Large Hadron Collider at CERN. LHCb is a specialized b-physics experiment, designed primarily to measure the paramet ...
—participate in the heavy-ion programme.


History

The exploration of hot hadron matter and of multiparticle production has a long history initiated by theoretical work on multiparticle production by Enrico Fermi in the US and
Lev Landau Lev Davidovich Landau (russian: Лев Дави́дович Ланда́у; 22 January 1908 – 1 April 1968) was a Soviet-Azerbaijani physicist of Jewish descent who made fundamental contributions to many areas of theoretical physics. His ac ...
in the USSR. These efforts paved the way to the development in the early 1960s of the thermal description of multiparticle production and the statistical bootstrap model by
Rolf Hagedorn Rolf Hagedorn (20 July 1919 – 9 March 2003) was a German theoretical physicist who worked at CERN. He is known for the idea that hadronic matter has a "melting point". The Hagedorn temperature is named in his honor. Early life Hagedorn's y ...
. These developments led to search for and discovery of quark-gluon plasma. Onset of the production of this new form of matter remains under active investigation.


First collisions

The first heavy-ion collisions at modestly relativistic conditions were undertaken at the Lawrence Berkeley National Laboratory (LBNL, formerly LBL) at Berkeley, California, U.S.A., and at the
Joint Institute for Nuclear Research The Joint Institute for Nuclear Research (JINR, russian: Объединённый институт ядерных исследований, ОИЯИ), in Dubna, Moscow Oblast (110 km north of Moscow), Russia, is an international research c ...
(JINR) in
Dubna Dubna ( rus, Дубна́, p=dʊbˈna) is a town in Moscow Oblast, Russia. It has a status of ''naukograd'' (i.e. town of science), being home to the Joint Institute for Nuclear Research, an international nuclear physics research center and one o ...
, Moscow Oblast, USSR. At the LBL, a transport line was built to carry heavy ions from the heavy-ion accelerator HILAC to the
Bevatron The Bevatron was a particle accelerator — specifically, a weak-focusing proton synchrotron — at Lawrence Berkeley National Laboratory, U.S., which began operating in 1954. The antiproton was discovered there in 1955, resulting in ...
. The energy scale at the level of 1–2 GeV per nucleon attained initially yields compressed nuclear matter at few times normal nuclear density. The demonstration of the possibility of studying the properties of compressed and excited nuclear matter motivated research programs at much higher energies in accelerators available at BNL and CERN with relativist beams targeting laboratory fixed targets. The first collider experiments started in 1999 at RHIC, and LHC begun colliding heavy ions at one order of magnitude higher energy in 2010.


CERN operation

The LHC collider at CERN operates one month a year in the nuclear-collision mode, with Pb nuclei colliding at 2.76 TeV per nucleon pair, about 1500 times the energy equivalent of the rest mass. Overall 1250 valence quarks collide, generating a hot quark–gluon soup. Heavy atomic nuclei stripped of their electron cloud are called heavy ions, and one speaks of (ultra)relativistic heavy ions when the
kinetic energy In physics, the kinetic energy of an object is the energy that it possesses due to its motion. It is defined as the work needed to accelerate a body of a given mass from rest to its stated velocity. Having gained this energy during its acc ...
exceeds significantly the rest energy, as it is the case at LHC. The outcome of such collisions is production of very many strongly interacting particles. In August 2012 ALICE scientists announced that their experiments produced
quark–gluon plasma Quark–gluon plasma (QGP) or quark soup is an interacting localized assembly of quarks and gluons at thermal (local kinetic) and (close to) chemical (abundance) equilibrium. The word ''plasma'' signals that free color charges are allowed. In a ...
with temperature at around 5.5 trillion
kelvin The kelvin, symbol K, is the primary unit of temperature in the International System of Units (SI), used alongside its prefixed forms and the degree Celsius. It is named after the Belfast-born and University of Glasgow-based engineer and phy ...
s, the highest temperature achieved in any physical experiments thus far. This temperature is about 38% higher than the previous record of about 4 trillion kelvins, achieved in the 2010 experiments at the
Brookhaven National Laboratory Brookhaven National Laboratory (BNL) is a United States Department of Energy national laboratory located in Upton, Long Island, and was formally established in 1947 at the site of Camp Upton, a former U.S. Army base and Japanese internment c ...
. The ALICE results were announced at the August 13 ''Quark Matter 2012'' conference in
Washington, D.C. ) , image_skyline = , image_caption = Clockwise from top left: the Washington Monument and Lincoln Memorial on the National Mall, United States Capitol, Logan Circle, Jefferson Memorial, White House, Adams Morgan, ...
The quark–gluon plasma produced by these experiments approximates the conditions in the universe that existed microseconds after the Big Bang, before the matter coalesced into
atom Every atom is composed of a nucleus and one or more electrons bound to the nucleus. The nucleus is made of one or more protons and a number of neutrons. Only the most common variety of hydrogen has no neutrons. Every solid, liquid, gas, ...
s.


Objectives

There are several scientific objectives of this international research program: * The formation and investigation of a new state of matter made of quarks and gluons, the quark–gluon plasma QGP, which prevailed in early universe in first 30 microseconds. * The study of
color confinement In quantum chromodynamics (QCD), color confinement, often simply called confinement, is the phenomenon that color-charged particles (such as quarks and gluons) cannot be isolated, and therefore cannot be directly observed in normal conditions b ...
and the transformation of color confining = quark confining vacuum state to the excited state physicists call perturbative vacuum, in which quarks and gluons can roam free, which occurs at Hagedorn temperature; * The study the origins of
hadron In particle physics, a hadron (; grc, ἁδρός, hadrós; "stout, thick") is a composite subatomic particle made of two or more quarks held together by the strong interaction. They are analogous to molecules that are held together by the e ...
( proton,
neutron The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons beh ...
etc.) matter mass believed to be related to the phenomenon of quark confinement and vacuum structure.


Experimental program

This experimental program follows on a decade of research at the RHIC collider at BNL and almost two decades of studies using fixed targets at SPS at CERN and AGS at BNL. This experimental program has already confirmed that the extreme conditions of matter necessary to reach QGP phase can be reached. A typical temperature range achieved in the QGP created : T = 300~\text/k_\text = 3.3 \times 10^~\text is more than times greater than in the center of the
Sun The Sun is the star at the center of the Solar System. It is a nearly perfect ball of hot plasma, heated to incandescence by nuclear fusion reactions in its core. The Sun radiates this energy mainly as light, ultraviolet, and infrared radi ...
. This corresponds to an energy density : \epsilon = 10~\text^3 = 1.8 \times 10^~\text^3 . The corresponding relativistic-matter
pressure Pressure (symbol: ''p'' or ''P'') is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure (also spelled ''gage'' pressure)The preferred spelling varies by country and e ...
is : P \simeq \frac \epsilon = 0.52 \times 10^~\text.


More information


Rutgers University Nuclear Physics Home Page


* https://web.archive.org/web/20101212105542/http://www.er.doe.gov/np/


References

{{DEFAULTSORT:High Energy Nuclear Physics Nuclear physics Quantum chromodynamics