Reginald Aubrey Fessenden
   HOME

TheInfoList



OR:

Reginald Aubrey Fessenden (October 6, 1866 – July 22, 1932) was a Canadian-born inventor, who did a majority of his work in the United States and also claimed U.S. citizenship through his American-born father. During his life he received hundreds of patents in various fields, most notably ones related to
radio Radio is the technology of signaling and communicating using radio waves. Radio waves are electromagnetic waves of frequency between 30 hertz (Hz) and 300 gigahertz (GHz). They are generated by an electronic device called a transmi ...
and
sonar Sonar (sound navigation and ranging or sonic navigation and ranging) is a technique that uses sound propagation (usually underwater, as in submarine navigation) to navigate, measure distances (ranging), communicate with or detect objects on o ...
. Fessenden is best known for his pioneering work developing radio technology, including the foundations of amplitude modulation (AM) radio. His achievements included the first transmission of speech by radio (1900), and the first two-way radiotelegraphic communication across the Atlantic Ocean (1906). In 1932 he reported that, in late 1906, he also made the first radio broadcast of entertainment and music, although a lack of verifiable details has led to some doubts about this claim.


Early years

Reginald Fessenden was born October 6, 1866, in East Bolton, Quebec, the eldest of the Reverend Elisha Joseph Fessenden and
Clementina Trenholme Clementina Trenholm Fessenden (4 May 1843 – 14 September 1918) was a Canadian author and social organiser. She was also the mother of Reginald Fessenden, the radio pioneer. Biography Clementina Trenholm Fessenden was born in the village of ...
's four children. Elisha Fessenden was a
Church of England in Canada The Anglican Church of Canada (ACC or ACoC) is the province of the Anglican Communion in Canada. The official French-language name is ''l'Église anglicane du Canada''. In 2017, the Anglican Church counted 359,030 members on parish rolls in 2 ...
minister, and the family moved to a number of postings throughout the province of Ontario. While growing up Fessenden attended a number of educational institutions. At the young age of nine he was enrolled in the DeVeaux Military school for a year. He next attended
Trinity College School Trinity College School (TCS) is a co-educational, independent boarding and day school located in Port Hope, Ontario, Canada. TCS was founded on May 1, 1865, more than two years before Canadian Confederation. It includes a Senior School ...
in
Port Hope, Ontario Port Hope is a municipality in Southern Ontario, Canada, approximately east of Toronto and about west of Kingston. It is located at the mouth of the Ganaraska River on the north shore of Lake Ontario, in the west end of Northumberland County. ...
, from 1877 until the summer of 1879. He also spent a year working for the Imperial Bank at Woodstock because he had not yet reached the age of 16 needed to enroll in college. At the age of fourteen, he returned to his hometown in the Eastern Townships and went to the nearby
Bishop's College School Bishop's College School or BCS is an English-language non-profit independent boarding prep school in Sherbrooke, Quebec, Canada for students in Grades 7 to 12.Thomson, Ashley; Lafortune, Sylvie (1999). Handbook of Canadian Boarding Schools. To ...
, which granted him a mathematics mastership (teaching job) and a scholarship for studying in its college division at University of Bishop's College. Thus, while Fessenden was still a teenager, he taught mathematics to the school's younger students (some older than himself) for four years, while simultaneously studying natural sciences with older students at the college. At the age of eighteen, Fessenden left Bishop's without having been awarded a degree, although he had "done substantially all the work necessary", in order to accept a position at the Whitney Institute, near to Flatts Village in
Bermuda ) , anthem = "God Save the King" , song_type = National song , song = "Hail to Bermuda" , image_map = , map_caption = , image_map2 = , mapsize2 = , map_caption2 = , subdivision_type = Sovereign state , subdivision_name = , es ...
, where for the next two years he worked as the
headmaster A head master, head instructor, bureaucrat, headmistress, head, chancellor, principal or school director (sometimes another title is used) is the staff member of a school with the greatest responsibility for the management of the school. In som ...
and sole teacher. (This lack of a degree may have hurt Fessenden's employment opportunities. When
McGill University McGill University (french: link=no, Université McGill) is an English-language public research university located in Montreal, Quebec Montreal ( ; officially Montréal, ) is the second-most populous city in Canada and most populous ...
in Montreal established an electrical engineering department, his application to become its chairman was turned down.) While in Bermuda, he became engaged to Helen May Trott of Smith's Parish."The Inventions of Reginald A. Fessenden: Part VI"
''Radio News'', June 1925, pp. 2216–2218, 2274, 2276.
They married on September 21, 1890, in the United States at Manhattan in New York City, and later had a son, Reginald Kennelly Fessenden, born May 7, 1893, in Lafayette, Allen, Indiana.


Early work

Fessenden's classical education provided him with only a limited amount of scientific and technical training. Interested in increasing his skills in the electrical field, he moved to New York City in 1886, with hopes of gaining employment with the famous inventor,
Thomas Edison Thomas Alva Edison (February 11, 1847October 18, 1931) was an American inventor and businessman. He developed many devices in fields such as electric power generation, mass communication, sound recording, and motion pictures. These inventi ...
. However, his initial attempts were rebuffed; in his first application Fessenden wrote, "Do not know anything about electricity, but can learn pretty quick," to which Edison replied, "Have enough men now who do not know about electricity." However, Fessenden persevered, and before the end of the year was hired for a semi-skilled position as an assistant tester for the
Edison Machine Works The Edison Machine Works was a manufacturing company set up to produce dynamos, large electric motors, and other components of the electrical illumination system being built in the 1880s by Thomas A. Edison in New York City. History The need fo ...
, which was laying underground electrical mains in New York City. He quickly proved his worth, and received a series of promotions, with increasing responsibility for the project. In late 1886, Fessenden began working directly for Edison at the inventor's new laboratory in
West Orange, New Jersey West Orange is a suburban township in Essex County, in the U.S. state of New Jersey. As of the 2020 United States Census, its population was 48,843, an increase of 2,636 (+5.7%) from the 46,207 counted in the 2010 Census.
, as a junior technician. He participated in a broad range of projects, which included work in solving problems in chemistry, metallurgy, and electricity. However, in 1890, facing financial problems, Edison was forced to lay off most of the laboratory employees, including Fessenden. (Fessenden remained an admirer of Edison his entire life, and in 1925 stated that "there is only one figure in history which stands in the same rank as him as an inventor, ''i. e.'' Archimedes".) Taking advantage of his recent practical experience, Fessenden was able to find positions with a series of manufacturing companies. In 1892, he received an appointment as professor for the newly formed Electrical Engineering department at
Purdue University Purdue University is a public land-grant research university in West Lafayette, Indiana, and the flagship campus of the Purdue University system. The university was founded in 1869 after Lafayette businessman John Purdue donated land and mone ...
in West Lafayette, Indiana; while there he helped the Westinghouse Corporation install the lighting for the 1893 Chicago World Columbian Exposition. Later that year,
George Westinghouse George Westinghouse Jr. (October 6, 1846 – March 12, 1914) was an American entrepreneur and engineer based in Pennsylvania who created the railway air brake and was a pioneer of the electrical industry, receiving his first patent at the age ...
personally recruited Fessenden for the newly created position of chair of the Electrical Engineering department at the
Western University of Pennsylvania The University of Pittsburgh (Pitt) is a public state-related research university in Pittsburgh, Pennsylvania. The university is composed of 17 undergraduate and graduate schools and colleges at its urban Pittsburgh campus, home to the univers ...
in
Pittsburgh Pittsburgh ( ) is a city in the Commonwealth of Pennsylvania, United States, and the county seat of Allegheny County. It is the most populous city in both Allegheny County and Western Pennsylvania, the second-most populous city in Pennsylva ...
(now the University of Pittsburgh).


Radio work

In the late 1890s, reports began to appear about the success Guglielmo Marconi was having in developing a practical system of transmitting and receiving radio signals, then commonly known as "
wireless telegraphy Wireless telegraphy or radiotelegraphy is transmission of text messages by radio waves, analogous to electrical telegraphy using cables. Before about 1910, the term ''wireless telegraphy'' was also used for other experimental technologies for ...
". Fessenden began limited radio experimentation, and soon came to the conclusion that he could develop a far more efficient system than the
spark-gap transmitter A spark-gap transmitter is an obsolete type of radio transmitter which generates radio waves by means of an electric spark."Radio Transmitters, Early" in Spark-gap transmitters were the first type of radio transmitter, and were the main type us ...
and
coherer The coherer was a primitive form of radio signal detector used in the first radio receivers during the wireless telegraphy era at the beginning of the 20th century. Its use in radio was based on the 1890 findings of French physicist Édouard Bran ...
- receiver combination which had been created by
Oliver Lodge Sir Oliver Joseph Lodge, (12 June 1851 – 22 August 1940) was a British physicist and writer involved in the development of, and holder of key patents for, radio. He identified electromagnetic radiation independent of Hertz's proof and at his ...
and Marconi. By 1899 he was able to send radiotelegraph messages between Pittsburgh and
Allegheny City Allegheny City was a municipality that existed in the U.S. state of Pennsylvania from 1788 until it was annexed by Pittsburgh in 1907. It was located north across the Allegheny River from downtown Pittsburgh, with its southwest border formed by ...
(now an area of Pittsburgh), using a receiver of his own design.


Weather Bureau contract

In 1900 Fessenden left Pittsburgh to work for the
United States Weather Bureau The National Weather Service (NWS) is an agency of the United States federal government that is tasked with providing weather forecasts, warnings of hazardous weather, and other weather-related products to organizations and the public for the ...
, with the objective of demonstrating the practicality of using coastal stations to transmit weather information, thereby avoiding the expense of the existing telegraph lines. The contract called for him to be paid $3,000 per year and provided with work space, assistance, and housing.Karwatka, D. (2004). "Reginald Fessenden and Radio Transmission". ''Tech Directions'', March 2004, 63(8), 12. Fessenden would retain ownership of any inventions, but the agreement also gave the Weather Bureau royalty-free use of any discoveries made during the term of the contract. Fessenden quickly made major advances, especially in receiver design, as he worked to develop audio reception of signals. His initial success came from the invention of a
barretter detector The hot-wire barretter was a demodulating detector, invented in 1902 by Reginald Fessenden, that found limited use in early radio receivers. In effect, it was a highly sensitive thermoresistor, which could demodulate amplitude-modulated signals, ...
. This was followed by an
electrolytic detector The electrolytic detector, or liquid barretter, was a type of detector (demodulator) used in early radio receivers. First used by Canadian radio researcher Reginald Fessenden in 1903, it was used until about 1913, after which it was superseded ...
, consisting of a fine wire dipped in nitric acid, which for the next few years set the standard for sensitivity in radio reception. As his work progressed, Fessenden also developed the
heterodyne principle A heterodyne is a signal frequency that is created by combining or mixing two other frequencies using a signal processing technique called ''heterodyning'', which was invented by Canadian inventor-engineer Reginald Fessenden. Heterodyning is us ...
, which used two closely spaced radio signals to produce an audible tone that made Morse code transmissions much easier to hear. However, heterodyne reception would not become practical for a decade after it was invented, because it required a method for producing a stable local signal, which would not become available until the development of the oscillating
vacuum-tube A vacuum tube, electron tube, valve (British usage), or tube (North America), is a device that controls electric current flow in a high vacuum between electrodes to which an electric potential difference has been applied. The type known as a ...
. Fessenden's initial Weather Bureau work took place at
Cobb Island Cobb Island is a small island located at the confluence of the Potomac and Wicomico rivers in southern Charles County, Maryland, United States. It is located approximately south of Washington, and is considered to be within the Washington, D.C ...
, Maryland, located in the
Potomac River The Potomac River () drains the Mid-Atlantic United States, flowing from the Potomac Highlands into Chesapeake Bay. It is long,U.S. Geological Survey. National Hydrography Dataset high-resolution flowline dataThe National Map. Retrieved Augu ...
about downstream from Washington, D.C. As the experimentation expanded, additional stations were built along the Atlantic Coast in North Carolina and Virginia. However, in the midst of promising advances, Fessenden became embroiled in disputes with his sponsor. In particular, he charged that Bureau Chief Willis Moore had attempted to gain a half-share of the patents. Fessenden refused to sign over the rights, and his work for the Weather Bureau ended in August 1902.


National Electric Signaling Company

In November 1902, two wealthy
Pittsburgh Pittsburgh ( ) is a city in the Commonwealth of Pennsylvania, United States, and the county seat of Allegheny County. It is the most populous city in both Allegheny County and Western Pennsylvania, the second-most populous city in Pennsylva ...
businessmen, Hay Walker Jr. and Thomas H. Given, financed the formation of the National Electric Signaling Company (NESCO) to support Fessenden's research. Initially the new company was based in Washington, D.C., where a station was constructed for experimental and demonstration purposes. Two additional demonstration stations were constructed at Collinswood, New Jersey (near Philadelphia) and Jersey City, New Jersey (near New York City). In 1904 an attempt was made to link the General Electric plants in Schenectady, New York, and Lynn, Massachusetts, a distance of , however the effort was unsuccessful. Efforts to sell equipment to the U.S. and other governments, as well as private companies, met with little success. An ongoing area of conflict, especially with the U.S. Navy, were the high prices Fessenden tried to charge. The Navy in particular felt Fessenden's quotes were too far above the device's manufacturing costs to be considered reasonable, and contracted with other companies to build equipment that used Fessenden designs. This led to bad feelings and a series of patent infringement lawsuits. An alternate plan to sell the company as a whole was unsuccessful in finding a buyer. Eventually a radical change in company orientation took place. In 1904 it was decided to compete with the existing ocean cables, by setting up a transatlantic radiotelegraph link. The headquarters for company operations was moved to
Brant Rock Ocean Bluff-Brant Rock is a census-designated place (CDP) in Plymouth County, Massachusetts, United States, composed of the neighborhoods of Ocean Bluff, Brant Rock, Fieldston, and Rexhame in the town of Marshfield. The population of the CDP ...
,
Massachusetts Massachusetts (Massachusett: ''Muhsachuweesut Massachusett_writing_systems.html" ;"title="nowiki/> məhswatʃəwiːsət.html" ;"title="Massachusett writing systems">məhswatʃəwiːsət">Massachusett writing systems">məhswatʃəwiːsət'' En ...
, which was to be the western terminal for the proposed new service.


Rotary-spark transmitter and the first two-way transatlantic transmission

The plan was to conduct the transatlantic service using Fessenden-designed rotary spark-gap transmitters. A 420-foot (128 meter) guyed antenna was constructed at Brant Rock, with a similar tower erected at
Machrihanish Machrihanish ( gd, Machaire Shanais, ) is a village in Argyll, on the west coast of Scotland. It is a short distance north of the tip of the Mull of Kintyre, which faces out towards Northern Ireland and the Atlantic. Machrihanish bay The main ...
in western Scotland. In January 1906, these stations made the first successful two-way transmission across the Atlantic, exchanging Morse code messages. (Marconi had only achieved one-way transmissions at this time.) However, the system was unable to reliably bridge this distance when the sun was up, or during the summer months when interference levels were higher, so work was suspended until later in the year. Then, on December 6, 1906, the Machrihanish radio tower collapsed in a gale, abruptly ending the transatlantic project before it could begin commercial service. (A detailed review in ''Engineering'' magazine blamed the collapse on sub-standard construction, due to "the way in which the joints were made by the man employed for the purpose by the sub-contractors to whom the work was entrusted by the Brown Hoisting Machinery Company" and "The only wonder is that the tower did not fall before.") In a letter published in the January 19, 1907, issue of ''Scientific American'', Fessenden discounted the effect of the tower collapse, stating that "The working up to the date of the accident was, however, so successful that the directors of the National Electric Signaling Company have decided that it is unnecessary to carry on the experimental developments any further, and specifications are being drawn up for the erection of five stations for doing transatlantic and other cable work, and a commercial permit is being applied for in England." However, the tower collapse did in fact mark the end of NESCO's transatlantic efforts.


Audio transmissions

Fessenden had a very early interest in the possibility of making audio radio transmissions, in contrast to the early spark-gap transmissions that could only transmit Morse code messages. As early as 1891, he had investigated sending alternating currents of varying frequencies along telegraph lines, in order to create a multiplex telegraph system. He would later apply the knowledge gained about tuning and resonance from his alternating current electrical work to the higher frequency currents used in radio, in order to develop the concept of
continuous-wave A continuous wave or continuous waveform (CW) is an electromagnetic wave of constant amplitude and frequency, typically a sine wave, that for mathematical analysis is considered to be of infinite duration. It may refer to e.g. a laser or particl ...
radio signals. Fessenden's basic approach was disclosed in U.S. Patent 706,737, which he applied for on May 29, 1901, and was issued the next year. It called for the use of a high-speed alternator (referred to as "an alternating-current dynamo") that generated "pure sine waves" and produced "a continuous train of radiant waves of substantially uniform strength", or, in modern terminology, a continuous-wave (CW) transmitter. The idea of using continuous-wave radio signals was in direct conflict with the current orthodoxy that the abrupt "whiplash" effect produced by large electrical sparks was needed in order to create adequately strong signals.
John Ambrose Fleming Sir John Ambrose Fleming FRS (29 November 1849 – 18 April 1945) was an English electrical engineer and physicist who invented the first thermionic valve or vacuum tube, designed the radio transmitter with which the first transatlantic ra ...
, a Marconi associate, was particularly dismissive in his book ''The Principles of Electric Wave Telegraphy'', a detailed review of the state of the art as he saw it that was published in 1906. Reviewing Fessenden's patent, he wrote that "The creation of an electric wave seems to involve a certain suddenness in the beginning of the oscillations, and an alternator giving a simple sine-curve would not be likely to produce the required effect..." (In view of Fessenden's ultimate success, this statement disappeared from the book's 1916 edition.) Fessenden's next step, taken from standard wire-telephone practice, was to insert a simple carbon microphone into the transmission line, which was used to modulate the
carrier wave In telecommunications, a carrier wave, carrier signal, or just carrier, is a waveform (usually sinusoidal) that is modulated (modified) with an information-bearing signal for the purpose of conveying information. This carrier wave usually has ...
signal for audio transmissions, or, again using modern terms, used to produce
amplitude modulated Amplitude modulation (AM) is a modulation technique used in electronic communication, most commonly for transmitting messages with a radio wave. In amplitude modulation, the amplitude (signal strength) of the wave is varied in proportion to t ...
(AM) radio signals. Fessenden began his research on audio transmissions while still on Cobb Island. Because he did not yet have a continuous-wave transmitter, initially he worked with an experimental "high-frequency spark" transmitter, taking advantage of the fact that the higher the spark rate, the closer a spark-gap transmission comes to producing continuous waves. He later reported that, on December 23, 1900, he successfully transmitted speech over a distance of about 1.6 kilometers (one mile), saying; “One, two, three, four. Is It snowing where you are, Mr. Thiessen? If so, telegraph back and let me know”, which appears to have been the first successful audio transmission using radio signals."Experiments and Results in Wireless Telephony" by John Grant, ''The American Telephone Journal''
Part I
January 26, 1907, pp. 49–51
Part II
February 2, 1907, pp. 68–70, 79–80.
However, at this time the sound was far too distorted to be commercially practical, although as a test this did show that with further refinements it would become possible to effectively transmit sounds by radio. Others claim the honor of using radiowaves to transmit their voice goes to the Brazilian priest and inventor
Roberto Landell de Moura Father Roberto Landell de Moura (January 21, 1861 – June 30, 1928), commonly known as Roberto Landell, was a Brazilian Roman Catholic priest and inventor. He is best known for his work developing long-distance audio transmissions, using a varie ...
some months earlier, with reports saying the transmission reached 8 km on June 3, 1900. For a time Fessenden continued working with more sophisticated high-frequency spark transmitters, including versions that used compressed air, which began to take on some of the characteristics of arc-transmitters patented by
Valdemar Poulsen Valdemar Poulsen (23 November 1869 – 23 July 1942) was a Danish engineer who made significant contributions to early radio technology. He developed a magnetic wire recorder called the telegraphone in 1898 and the first continuous wave rad ...
. Fessenden unsuccessfully attempted to sell this form of radiotelephone, later noting: "In 1904, with a 20,000 frequency spark and compressed nitrogen gap, such good results were obtained that a demonstration was given to a number of electrical engineers, who signed affidavits that they considered the articulation as commercially good over twenty-five miles, and the sets were advertised for sale..." (In a 1908 review, he conceded that with this approach "The transmission was, however, still not absolutely perfect.")


Alternator-transmitter

Fessenden's ultimate plan for an audio-capable transmitter was to take a basic electrical
alternator An alternator is an electrical generator that converts mechanical energy to electrical energy in the form of alternating current. For reasons of cost and simplicity, most alternators use a rotating magnetic field with a stationary armature.Gor ...
, which normally rotated at speeds that produced alternating current of at most a few hundred cycles-per-second ( Hz), and greatly increase its rotational speed, in order to create electrical currents of tens-of-thousands of cycles-per-second (kHz), thus producing a steady continuous-wave transmission when connected to an aerial. However, it would take many years of expensive development before even a prototype alternator-transmitter would be ready, and a few years beyond that for high-power versions to become available. One concern was whether at these high speeds the alternator might disintegrate due to the high rotation speed tearing it apart. Because of this, as a precaution, while the alternator was being initially developed it was "placed in a pit surrounded by sandbags". Fessenden contracted with
General Electric General Electric Company (GE) is an American multinational conglomerate founded in 1892, and incorporated in New York state and headquartered in Boston. The company operated in sectors including healthcare, aviation, power, renewable en ...
(GE) to help design and produce a series of high-frequency alternator-transmitters. In 1903,
Charles Proteus Steinmetz Charles Proteus Steinmetz (born Karl August Rudolph Steinmetz, April 9, 1865 – October 26, 1923) was a German-born American mathematician and electrical engineer and professor at Union College. He fostered the development of alternati ...
of GE delivered a 10 kHz version which proved of limited use and could not be directly used as a radio transmitter. Fessenden's request for a faster, more powerful unit was assigned to Ernst F. W. Alexanderson, who in August 1906 delivered an improved model which operated at a transmitting frequency of approximately 50 kHz, although with far less power than Fessenden's rotary-spark transmitters. The alternator-transmitter achieved the goal of transmitting quality audio signals, but the lack of any way to amplify the signals meant they were somewhat weak. On December 21, 1906, Fessenden made an extensive demonstration of the new alternator-transmitter at Brant Rock, showing its utility for point-to-point wireless telephony, including interconnecting his stations to the wire telephone network. As part of the demonstration, speech was transmitted 18 kilometers (11 miles) to a listening site at Plymouth, Massachusetts. A detailed review of this demonstration appeared in ''The American Telephone Journal'' and a summary by Fessenden appeared in ''Scientific American''. A portion of a report produced by Greenleaf W. Pickard of the Telephone Company's Boston office, which includes additional information on some still existing defects, appeared in
Ernst Ruhmer Ernst Walter Ruhmer (15 April 1878 – 8 April 1913) was a German physicist. He was best known for investigating practical applications making use of the light-sensitivity properties of selenium, which he employed in developing wireless telephony u ...
's ''Wireless Telephony in Theory and Practice''. Although primarily designed for transmissions spanning a few kilometers, on a couple of occasions the test Brant Rock audio transmissions were apparently overheard by NESCO employee James C. Armor across the Atlantic at the
Machrihanish Machrihanish ( gd, Machaire Shanais, ) is a village in Argyll, on the west coast of Scotland. It is a short distance north of the tip of the Mull of Kintyre, which faces out towards Northern Ireland and the Atlantic. Machrihanish bay The main ...
site.


First entertainment radio broadcast

Until the early 1930s, it was generally accepted that Lee de Forest, who conducted a series of test broadcasts beginning in 1907, and who was widely quoted promoting the potential of organized radio broadcasting, was the first person to transmit music and entertainment by radio. De Forest's first entertainment broadcast occurred in February 1907, when he transmitted electronic
telharmonium The Telharmonium (also known as the Dynamophone) was an early electrical organ, developed by Thaddeus Cahill c. 1896 and patented in 1897. , filed 1896-02-04. The electrical signal from the Telharmonium was transmitted over wires; it was hear ...
music from his laboratory station in New York City. This was followed by tests that included, in the fall,
Eugenia Farrar Eugenia Farrar (1875—1966), whose full name was Ada Eugenia Hildegard von Boos Farrar, was a mezzo-soprano singer and philanthropist. She was born in Sweden and lived most of her life in New York City. In the fall of 1907 she gave what is comm ...
singing "I Love You Truly". (Beginning in 1904, the U.S. Navy had broadcast daily time signals and weather reports, but these employed spark transmitters, transmitting in Morse code). In 1928, as part of a lecture reviewing "The Early History of Radio in the United States", H. P. Davis, commenting on entertainment offerings, asserted that "Reginald Fessenden, probably the first to attempt this, broadcast a program Christmas Eve 1906", but did not provide any additional details, and his comment was little noticed at the time. The first widely publicized information about Fessenden's early broadcasts did not appear until 1932, when an article prepared by former Fessenden associate Samuel M. Kintner, "Pittsburgh's Contributions to Radio", appeared in the December 1932 issue of ''The Proceedings of the Institute of Radio Engineers''. This reviewed information included in a January 29, 1932, letter sent by Fessenden to Kintner. (Fessenden subsequently died five months before Kintner's article appeared). In this account, Fessenden reported that on the evening of December 24, 1906 ( Christmas Eve), he had made the first of two radio broadcasts of music and entertainment to a general audience, using the alternator-transmitter at Brant Rock. Fessenden remembered producing a short program that included a phonograph record of
Ombra mai fu "" ("Never was a shade…"), also known as "Largo from ''Xerxes''", is the opening aria from the 1738 opera '' Serse'' by George Frideric Handel. Context The opera was a commercial failure, lasting only five performances in London after its pre ...
(Largo) by George Frideric Handel, followed by Fessenden playing
Adolphe Adam Adolphe Charles Adam (; 24 July 1803 – 3 May 1856) was a French composer, teacher and music critic. A prolific composer for the theatre, he is best known today for his ballets ''Giselle'' (1841) and '' Le corsaire'' (1856), his operas '' Le po ...
's carol ''
O Holy Night "O Holy Night" (original title: ) is a well-known sacred song for Christmas performance. Originally based on a French-language poem by poet Placide Cappeau, written in 1843, with the first line (Midnight, Christian, is the solemn hour) that co ...
'' on the violin and singing ''Adore and be Still'' by
Gounod Charles-François Gounod (; ; 17 June 181818 October 1893), usually known as Charles Gounod, was a French composer. He wrote twelve operas, of which the most popular has always been ''Faust (opera), Faust'' (1859); his ''Roméo et Juliette'' (18 ...
, and closing with a biblical passage: "Glory to God in the highest and on earth peace to men of good will" ( Luke 2:14). He also stated that a second short program was broadcast on December 31 ( New Year's Eve). The intended audience for both of these transmissions was primarily shipboard radio operators along the Atlantic seaboard. Fessenden claimed that the two programs had been widely publicized in advance, and the Christmas Eve broadcast had been heard "as far down" as Norfolk, Virginia, while the New Year Eve's broadcast had reached listeners in the
West Indies The West Indies is a subregion of North America, surrounded by the North Atlantic Ocean and the Caribbean Sea that includes 13 independent island countries and 18 dependencies and other territories in three major archipelagos: the Greate ...
. Anticipation of the 2006 centennial anniversary of Fessenden's reported broadcasts brought renewed interest, as well as additional questions. A key issue was why, despite Fessenden's assertion that the two programs had been widely heard, there did not appear to be any independent corroborating evidence for his account. (Even the Helen Fessenden biography relies exclusively on details contained in the January 29, 1932, letter used by the Kintner article.) There was general consensus in the centennial discussions that Fessenden had the technical means to make broadcasts, given the widespread reports about the success of the December 21 alternator-transmitter demonstrations. However, because of the station's very low power, even if the broadcasts had taken place it was questionable if the range could have matched Fessenden's claim of being heard hundreds of kilometers away. In the period leading up to the centennial, James E. O'Neal conducted extensive research, but did not find any ships' radio log accounts, or any contemporary literature, to confirm the reported holiday broadcasts. A follow-up article two years later further reported that a similar attempt to verify the details of the broadcasts had taken place in 1956, which had also failed to uncover any confirmation of Fessenden's statements. One alternate possibility proposed by O'Neal was that perhaps something similar to what Fessenden remembered could have taken place during a series of tests conducted in 1909. A review by Donna L. Halper and Christopher H. Sterling suggested that debating the existence of the holiday broadcasts was ignoring the fact that, in their opinion, the December 21 demonstration, which included the playing of a phonograph record, in itself qualified to be considered an entertainment broadcast. Jack Belrose flatly argued that there was no reason to doubt Fessenden's account, in part because it had not been challenged in the years immediately following publication of the Kintner article. Although Fessenden's claim for the first radio broadcast in 1906 is recognized as an IEEE Milestone, in view of the contrasting opinions among radio historians, Mike Adams summarized the situation as "More than 100 years after its possible occurrence, the Fessenden 'first broadcaster' controversy continues." The ''American Telephone Journal'' account of the December 21 alternator-transmitter demonstration included the statement that "It is admirably adapted to the transmission of news, music, etc. as, owing to the fact that no wires are needed, simultaneous transmission to many subscribers can be effected as easily as to a few", echoing the words of a handout distributed to the demonstration witnesses, which stated " adioTelephony is admirably adapted for transmitting news, stock quotations, music, race reports, etc. simultaneously over a city, on account of the fact that no wires are needed and a single apparatus can distribute to ten thousand subscribers as easily as to a few. It is proposed to erect stations for this purpose in the large cities here and abroad." However, other than the two reported holiday transmissions, Fessenden does not appear to have conducted any other radio broadcasts, or to have even given additional thought about the potential of a regular broadcast service. In a 1908 comprehensive review of "Wireless Telephony", he included a section titled "possibilities" that listed promising radio telephone uses. Neither the main article, nor this list, makes any reference to broadcasting, instead only noting conventional applications of point-to-point communication, enumerated as "local exchanges", "long-distance lines", "transmarine transmission", "wireless telephony from ship to ship", and "wireless telephone from ship to local exchange".


Continuing work and dismissal from NESCO

The technical achievements made by Fessenden were not matched by financial success. Walker and Given continued to hope to sell NESCO to a larger company such as the
American Telephone & Telegraph Company AT&T Corporation, originally the American Telephone and Telegraph Company, is the subsidiary of AT&T Inc. that provides voice, video, data, and Internet telecommunications and professional services to businesses, consumers, and government agen ...
(AT&T). After the December 21, 1906, demonstrations, AT&T was said to be planning to acquire NESCO, but financial setbacks caused the telephone company to reconsider, and NESCO was unable to find another buyer. There were growing strains between Fessenden and the company owners, and Fessenden's formation of the Fessenden Wireless Company of Canada in
Montreal Montreal ( ; officially Montréal, ) is the second-most populous city in Canada and most populous city in the Canadian province of Quebec. Founded in 1642 as '' Ville-Marie'', or "City of Mary", it is named after Mount Royal, the triple ...
in 1906 may have led to suspicion that he was trying to freeze Walker and Given out of a potentially lucrative competing transatlantic service. The final break occurred in January 1911, when Fessenden was formally dismissed from NESCO. This resulted in his bringing suit against NESCO, for breach of contract. Fessenden won the initial court trial and was awarded damages; however, NESCO prevailed on appeal. To conserve assets, NESCO went into receivership in 1912, and Samuel Kintner was appointed general manager of the company. The legal stalemate would continue for over 15 years. In 1917, NESCO finally emerged from receivership, and was soon renamed the International Radio Telegraph Company. The company limped along for a few years, until it was sold to the Westinghouse Electric & Manufacturing Company in 1920, and the next year its assets, including numerous important Fessenden patents, were sold to the
Radio Corporation of America The RCA Corporation was a major American electronics company, which was founded as the Radio Corporation of America in 1919. It was initially a patent trust owned by General Electric (GE), Westinghouse, AT&T Corporation and United Fruit Com ...
(RCA), which also inherited the longstanding Fessenden legal proceedings. Finally, on March 31, 1928, Fessenden settled his outstanding lawsuits with RCA, receiving a significant cash settlement.


Later years

After Fessenden left NESCO, Ernst Alexanderson continued to work on alternator-transmitter development at General Electric, mostly for long range radiotelegraph use. He eventually developed the high-powered Alexanderson alternator, capable of transmitting across the Atlantic, and by 1916 the Fessenden-Alexanderson alternator was more reliable for transoceanic communication than the spark transmitters which were originally used to provide this service. Also, after 1920 radio broadcasting became widespread, and although the stations used vacuum-tube transmitters rather than alternator-transmitters (which vacuum-tubes made obsolete), they employed the same continuous-wave AM signals that Fessenden had introduced in 1906. Although Fessenden ceased radio research after his dismissal from NESCO in 1911, he continued to work in other fields. As early as 1904 he had helped engineer the
Niagara Falls Niagara Falls () is a group of three waterfalls at the southern end of Niagara Gorge, spanning the border between the province of Ontario in Canada and the state of New York in the United States. The largest of the three is Horseshoe Fall ...
power plant for the newly formed
Hydro-Electric Power Commission of Ontario Hydroelectricity, or hydroelectric power, is electricity generated from hydropower (water power). Hydropower supplies one sixth of the world's electricity, almost 4500 TWh in 2020, which is more than all other renewable sources combined an ...
. However, his most extensive work was in marine communication as consulting engineer with the Submarine Signal Company which built a widely used aid to navigation using bells, termed a submarine signal, acting much as an underwater foghorn. While there, he invented the Fessenden oscillator, an electromechanical
transducer A transducer is a device that converts energy from one form to another. Usually a transducer converts a signal in one form of energy to a signal in another. Transducers are often employed at the boundaries of automation, measurement, and cont ...
. Though the company immediately began replacing bells and primitive receivers on ships with the new device, it was also the basis for entirely new applications: underwater telegraphy and sonic distance measurement. The later was the basis for
sonar Sonar (sound navigation and ranging or sonic navigation and ranging) is a technique that uses sound propagation (usually underwater, as in submarine navigation) to navigate, measure distances (ranging), communicate with or detect objects on o ...
(SOund NAvigation Ranging), echo-sounding and the principle applied to
radar Radar is a detection system that uses radio waves to determine the distance ('' ranging''), angle, and radial velocity of objects relative to the site. It can be used to detect aircraft, ships, spacecraft, guided missiles, motor vehicles, we ...
(RAdio Detection And Ranging). The device was soon put to use for submarines to signal each other, as well as a method for locating icebergs, to help avoid another disaster like the one that sank ''Titanic''. While the company quickly applied his invention to replace the bells of its systems and entered acoustic telegraphy it ignored the echo ranging potential. The
echo sounding Echo sounding or depth sounding is the use of sonar for ranging, normally to determine the depth of water (bathymetry). It involves transmitting acoustic waves into water and recording the time interval between emission and return of a pulse; ...
was invented in 1912 by German physicist Alexander Behm. At the outbreak of
World War I World War I (28 July 1914 11 November 1918), often abbreviated as WWI, was one of the deadliest global conflicts in history. Belligerents included much of Europe, the Russian Empire, the United States, and the Ottoman Empire, with fightin ...
, Fessenden volunteered his services to the Canadian government and was sent to London where he developed a device to detect enemy artillery and another to locate enemy submarines. Other efforts included a version of
microfilm Microforms are scaled-down reproductions of documents, typically either photographic film, films or paper, made for the purposes of transmission, storage, reading, and printing. Microform images are commonly reduced to about 4% or of the origin ...
, that helped him to keep a compact record of his inventions, projects and patents. He also patented the basic ideas leading to reflection seismology, a technique important for its use in exploring for petroleum, and received patents for diverse subjects that included tracer bullets, paging, television apparatus, and a turbo electric drive for ships. An inveterate tinkerer, Fessenden eventually became the holder of more than 500 patents. He could often be found in a river or lake, floating on his back, a cigar sticking out of his mouth and a hat pulled down over his eyes.''Radio's 100 Men of Science'' by Orrin E. Dunlap, 1944, pp. 139–140. At home he liked to lie on the carpet, a cat on his chest. In this state of relaxation, Fessenden could imagine, invent and think his way to new ideas. Fessenden also had a reputation for being temperamental, although in his defense his wife later stated that "Fessenden was never a difficult man to W O R K with but he was an intensely difficult man to play politics with." However, one of his former assistants, Charles J. Pannill, recalled that "He was a great character, of splendid physique, but what a temper!", while a second, Roy Weagant, ruefully noted that "He could be very nice at times, but only at times." In 1925, ''Radio News'', saluting Fessenden as "one of the greatest American radio inventors", began a monthly autobiographical series titled "The Inventions of Reginald A. Fessenden", with the intention of publishing the completed installments as a book. However, instead of reviewing his radio work, Fessenden immediately went on a series of tangents, including discussions of which races he believed were the most capable of producing inventions, and the proper approach that government institutions should be taking in order to support inventors. (At the close of the seventh installment, ''Radio News'' included a disclaimer that it was "not responsible for any opinions expressed in Dr. Fessenden's article".) After eleven installments Fessenden had only covered his life up to 1893, having discussed virtually nothing about radio, and the series was quietly terminated at this point.


Awards

In 1921, the
Institute of Radio Engineers The Institute of Radio Engineers (IRE) was a professional organization which existed from 1912 until December 31, 1962. On January 1, 1963, it merged with the American Institute of Electrical Engineers (AIEE) to form the Institute of Electrical ...
presented Fessenden with its
IRE Medal of Honor The IEEE Medal of Honor is the highest recognition of the Institute of Electrical and Electronics Engineers (IEEE). It has been awarded since 1917, when its first recipient was Major Edwin H. Armstrong. It is given for an exceptional contributio ...
. The medallion was gold plated, and somehow Fessenden became convinced that earlier awards had been solid gold, so he angrily returned it. Only after Greenleaf W. Pickard investigated the matter and determined that the prior medals were also plated was Fessenden willing to relent. The next year Philadelphia's Board of Directors of City Trusts awarded Fessenden a
John Scott Medal John Scott Award, created in 1816 as the John Scott Legacy Medal and Premium, is presented to men and women whose inventions improved the "comfort, welfare, and happiness of human kind" in a significant way. "...the John Scott Medal Fund, establish ...
, which included a cash prize of $800, for "his invention of a reception scheme for continuous wave telegraphy and telephony", and recognized him as "One whose labors had been of great benefit." There was suspicion by Fessenden that these two awards had not been made in sincerity but in order to placate him. In his wife's biography, referring to the IRE medal, she quoted the proverb "beware of Greeks bearing gifts". The Scott Medal came under additional suspicion because it had been awarded at the suggestion of Westinghouse engineers, who were working for a company that had had financial disputes with Fessenden. In Helen Fessenden's opinion, "The Medal cost estinghousenothing and was a good 'sop to Cereberus'", and overall compared the medals to "small change for tips in the pockets of Big Business". In 1929 Fessenden was awarded
Scientific American ''Scientific American'', informally abbreviated ''SciAm'' or sometimes ''SA'', is an American popular science magazine. Many famous scientists, including Albert Einstein and Nikola Tesla, have contributed articles to it. In print since 1845, it ...
's Safety at Sea Gold Medal, in recognition of his invention "of the Fathometer and other safety instruments for safety at sea".


Death and legacy

After settling his lawsuit with RCA, Fessenden purchased a small estate called "Wistowe" (previously the home of Charles Maxwell Allen, the United States Consul, who had hosted
Samuel Clemens Samuel Langhorne Clemens (November 30, 1835 – April 21, 1910), known by his pen name Mark Twain, was an American writer, humorist, entrepreneur, publisher, and lecturer. He was praised as the "greatest humorist the United States has p ...
there), in
Hamilton Parish Hamilton Parish (originally Bedford Parish) is one of the nine parishes of Bermuda. It was renamed for Scottish aristocrat James Hamilton, 2nd Marquess of Hamilton (1589-1625) when he purchased the shares originally held in the Virginia Company ...
, near to Flatts Village in
Bermuda ) , anthem = "God Save the King" , song_type = National song , song = "Hail to Bermuda" , image_map = , map_caption = , image_map2 = , mapsize2 = , map_caption2 = , subdivision_type = Sovereign state , subdivision_name = , es ...
. He died there on July 22, 1932, and was interred in the cemetery of St. Mark's Church, Bermuda. On the occasion of his death, an editorial in the '' New York Herald Tribune'', "Fessenden Against the World", said:
It sometimes happens, even in science, that one man can be right against the world. Professor Fessenden was that man. It is ironic that among the hundreds of thousands of young radio engineers whose commonplaces of theory rest on what Professor Fessenden fought for bitterly and alone only a handful realize that the battle ever happened... It was he who insisted, against the stormy protests of every recognized authority, that what we now call radio was worked by "continuous waves" of the kind discovered by Hertz, sent through the ether by the transmitting station as light waves are sent out by a flame. Marconi and others insisted, instead, that what was happening was the so-called "whiplash effect"... It is probably not too much to say that the progress of radio was retarded a decade by this error... The whiplash theory faded gradually out of men's minds and was replaced by the continuous wave one with all too little credit to the man who had been right...
Beginning in 1961, the
Society of Exploration Geophysicists The Society of Exploration Geophysicists (SEG) is a learned society dedicated to promoting the science and education of exploration geophysics in particular and geophysics in general. The Society fosters the expert and ethical practice of geophys ...
has annually awarded its Reginald Fessenden Award to "a person who has made a specific technical contribution to exploration geophysics". In 1980, a Fessenden-Trott Scholarship was established at Purdue University's School of Electrical and Computer Engineering, in memory of Reginald Fessenden and his wife.ECE Scholarships
(engineering.purdue.edu)


Reginald A. Fessenden House

Fessenden's home at 45 Waban Hill Road in the village of Chestnut Hill in
Newton, Massachusetts Newton is a city in Middlesex County, Massachusetts, United States. It is approximately west of downtown Boston. Newton resembles a patchwork of thirteen villages, without a city center. According to the 2020 U.S. Census, the population of Ne ...
, is on the
National Register of Historic Places The National Register of Historic Places (NRHP) is the United States federal government's official list of districts, sites, buildings, structures and objects deemed worthy of preservation for their historical significance or "great artistic ...
and is also a U.S.
National Historic Landmark A National Historic Landmark (NHL) is a building, district, object, site, or structure that is officially recognized by the United States government for its outstanding historical significance. Only some 2,500 (~3%) of over 90,000 places listed ...
. He bought the house in 1906 or earlier and owned it for the rest of his life.


See also

*
Reginald Fessenden patents The list of Reginald Fessenden patents contains the innovation of his pioneering experiments. Reginald Aubrey Fessenden received hundreds of patents for devices in fields such as high-powered transmitting, sonar, and television. Patents * , "Le ...
* Alexanderson alternator: used by Fessenden for his first radio broadcast. *
Sonar Sonar (sound navigation and ranging or sonic navigation and ranging) is a technique that uses sound propagation (usually underwater, as in submarine navigation) to navigate, measure distances (ranging), communicate with or detect objects on o ...
*
List of Bishop's College School alumni Bishop's College School, a private secondary school founded in 1836 in the Borough of Lennoxville, Sherbrooke, Québec, Canada owns an Old boy network. Former male students are referred to as BCS Old Boys and former King's Hall, Compton & BCS fem ...


References

Citations General information * Hugh G. J. Aitken, ''The Continuous Wave: Technology and American Radio, 1900–1932''. Princeton University Press. Princeton, New Jersey. 1985. * Ira Brodsky, "The History of Wireless: How Creative Minds Produced Technology for the Masses" (Telescope Books, 2008) * Susan J. Douglas, ''Inventing American Broadcasting, 1899–1922''. The Johns Hopkins University Press. Baltimore, Maryland. 1987. * Orrin E. Dunlap, Jr., ''Radio's 100 Men of Science'', Reginald Aubrey Fessenden entry, p. 137–141. Harper & Brothers Publishers. New York. 1944. * Helen M. Fessenden
''Fessenden: Builder of Tomorrows''
Coward-McCann, Inc. New York. 1940. * Reginald A. Fessenden
"The Inventions of Reginald A. Fessenden"
''Radio News,'' 11 part series beginning with the January 1925 issue. * Reginald A. Fessenden,
"Wireless Telephony,"
''Transactions of the American Institute of Electrical Engineers,'' XXXVII (1908): 553–629. * Gary L. Frost, "Inventing Schemes and Strategies: The Making and Selling of the Fessenden Oscillator," ''Technology and Culture'' 42, no. 3 (July 2001): 462–488. * S. M. Kintner, "Pittsburgh's Contributions to Radio," ''Proceedings of the Institute of Radio Engineers,'' (December 1932): 1849–1862. * David W. Kraeuter, "The U. S. Patents of Reginald A. Fessenden".
Pittsburgh Antique Radio Society The Pittsburgh Antique Radio Society (PARS) was established in southwestern Pennsylvania in 1986 by Richard Brewster, John Haught and others. Its purpose is "the preservation and exhibition of historic communications equipment and early electro ...
, Inc., Washington Pennsylvania. 1990. OCLC record 20785626. * William M. McBride, "Strategic Determinism in Technology Selection: The Electric Battleship and U.S. Naval-Industrial Relations," ''Technology and Culture'' 33, no. 2 (April 1992): 248–277.


Patents


External links

* (fessenden.ca) *
The Start of Radio Broadcasting
– Canadian Communication Foundation * * * * * * * {{DEFAULTSORT:Fessenden, Reginald 1866 births 1932 deaths People from Estrie 19th-century American inventors 20th-century American inventors Anglophone Quebec people Bishop's College School Faculty Canadian inventors IEEE Medal of Honor recipients Persons of National Historic Significance (Canada) Purdue University faculty Radio pioneers University of Pittsburgh faculty