Prince Rupert's cube
   HOME

TheInfoList



OR:

In
geometry Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is ...
, Prince Rupert's cube is the largest cube that can pass through a hole cut through a unit cube without splitting it into two pieces. Its side length is approximately 1.06, 6% larger than the side length 1 of the unit cube through which it passes. The problem of finding the largest square that lies entirely within a unit cube is closely related, and has the same solution. Prince Rupert's cube is named after Prince Rupert of the Rhine, who asked whether a cube could be passed through a hole made in another cube ''of the same size'' without splitting the cube into two pieces. A positive answer was given by John Wallis. Approximately 100 years later, Pieter Nieuwland found the largest possible cube that can pass through a hole in a unit cube. Many other convex polyhedra, including all five
Platonic solid In geometry, a Platonic solid is a convex, regular polyhedron in three-dimensional Euclidean space. Being a regular polyhedron means that the faces are congruent (identical in shape and size) regular polygons (all angles congruent and all e ...
s, have been shown to have the ''Rupert property'': a copy of the polyhedron, of the same or larger shape, can be passed through a hole in the polyhedron. It is unknown whether this is true for all convex polyhedra.


Solution

Place two points on two adjacent edges of a unit cube, each at a distance of 3/4 from the point where the two edges meet, and two more points symmetrically on the opposite face of the cube. Then these four points form a square with side length \frac \approx 1.0606601. One way to see this is to first observe that these four points form a rectangle, by the symmetries of their construction. The lengths of all four sides of this rectangle equal (3\sqrt)/4, by the Pythagorean theorem or (equivalently) the formula for
Euclidean distance In mathematics, the Euclidean distance between two points in Euclidean space is the length of a line segment between the two points. It can be calculated from the Cartesian coordinates of the points using the Pythagorean theorem, therefor ...
in three dimensions. For instance, the first two points, together with the third point where their two edges meet, form an
isosceles right triangle A special right triangle is a right triangle with some regular feature that makes calculations on the triangle easier, or for which simple formulas exist. For example, a right triangle may have angles that form simple relationships, such as 45° ...
with legs of length 3/4, and the distance between the first two points is the hypotenuse of the triangle. As a rectangle with four equal sides, the shape formed by these four points is a square. Extruding the square in both directions perpendicularly to itself forms the hole through which a cube larger than the original one, up to side length (3\sqrt)/4, may pass. The parts of the unit cube that remain, after emptying this hole, form two
triangular prism In geometry, a triangular prism is a three-sided prism; it is a polyhedron made of a triangular base, a translated copy, and 3 faces joining corresponding sides. A right triangular prism has rectangular sides, otherwise it is ''oblique''. A ...
s and two irregular
tetrahedra In geometry, a tetrahedron (plural: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. The tetrahedron is the simplest of all the o ...
, connected by thin bridges at the four vertices of the square. Each prism has as its six vertices two adjacent vertices of the cube, and four points along the edges of the cube at distance 1/4 from these cube vertices. Each tetrahedron has as its four vertices one vertex of the cube, two points at distance 3/4 from it on two of the adjacent edges, and one point at distance 3/16 from the cube vertex along the third adjacent edge.


History

Prince Rupert's cube is named after Prince Rupert of the Rhine. According to a story recounted in 1693 by English mathematician John Wallis, Prince Rupert wagered that a hole could be cut through a cube, large enough to let another cube of the same size pass through it. Wallis showed that in fact such a hole was possible (with some errors that were not corrected until much later), and Prince Rupert won his wager. Wallis assumed that the hole would be parallel to a
space diagonal In geometry, a space diagonal (also interior diagonal or body diagonal) of a polyhedron is a line connecting two vertices that are not on the same face. Space diagonals contrast with '' face diagonals'', which connect vertices on the same face (bu ...
of the cube. The projection of the cube onto a plane perpendicular to this diagonal is a regular hexagon, and the best hole parallel to the diagonal can be found by drawing the largest possible square that can be inscribed into this hexagon. Calculating the size of this square shows that a cube with side length :\sqrt 6 -\sqrt 2\approx 1.03527, slightly larger than one, is capable of passing through the hole. Approximately 100 years later, Dutch mathematician Pieter Nieuwland found that a better solution may be achieved by using a hole with a different angle than the space diagonal. In fact, Nieuwland's solution is optimal. Nieuwland died in 1794, a year after taking a position as a professor at the
University of Leiden Leiden University (abbreviated as ''LEI''; nl, Universiteit Leiden) is a public research university in Leiden, Netherlands. The university was founded as a Protestant university in 1575 by William, Prince of Orange, as a reward to the city of Le ...
, and his solution was published posthumously in 1816 by Nieuwland's mentor, Jean Henri van Swinden. Since then, the problem has been repeated in many books on
recreational mathematics Recreational mathematics is mathematics carried out for recreation (entertainment) rather than as a strictly research and application-based professional activity or as a part of a student's formal education. Although it is not necessarily limited ...
, in some cases with Wallis' suboptimal solution instead of the optimal solution.


Models

The construction of a physical model of Prince Rupert's cube is made challenging by the accuracy with which such a model needs to be measured, and the thinness of the connections between the remaining parts of the unit cube after the hole is cut through it. For the maximally sized inner cube with length ≈1.06 relative to the length 1 outer cube, constructing a model is "mathematically possible but practically impossible". On the other hand, using the orientation of the maximal cube but making a smaller hole, big enough only for a unit cube, leaves additional thickness that allows for structural integrity. For the example using two cubes of the same size, as originally proposed by Prince Rupert, model construction is possible. In a 1950 survey of the problem, D. J. E. Schrek published photographs of a model of a cube passing through a hole in another cube. Martin Raynsford has designed a template for constructing paper models of a cube with another cube passing through it; however, to account for the tolerances of paper construction and not tear the paper at the narrow joints between parts of the punctured cube, the hole in Raynsford's model only lets cubes through that are slightly smaller than the outer cube. Since the advent of
3D printing 3D printing or additive manufacturing is the construction of a three-dimensional object from a CAD model or a digital 3D model. It can be done in a variety of processes in which material is deposited, joined or solidified under computer co ...
, construction of a Prince Rupert cube of the full 1:1 ratio has become easy.


Generalizations

A polyhedron P is said to have the ''Rupert property'' if a polyhedron of the same or larger size and the same shape as P can pass through a hole All five
Platonic solid In geometry, a Platonic solid is a convex, regular polyhedron in three-dimensional Euclidean space. Being a regular polyhedron means that the faces are congruent (identical in shape and size) regular polygons (all angles congruent and all e ...
s—the cube, regular
tetrahedron In geometry, a tetrahedron (plural: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. The tetrahedron is the simplest of all th ...
, regular
octahedron In geometry, an octahedron (plural: octahedra, octahedrons) is a polyhedron with eight faces. The term is most commonly used to refer to the regular octahedron, a Platonic solid composed of eight equilateral triangles, four of which meet at ea ...
, regular
dodecahedron In geometry, a dodecahedron (Greek , from ''dōdeka'' "twelve" + ''hédra'' "base", "seat" or "face") or duodecahedron is any polyhedron with twelve flat faces. The most familiar dodecahedron is the regular dodecahedron with regular pentagon ...
, and regular icosahedron—have the Rupert property. Of the 13 Archimedean solids, it is known that at least these ten have the Rupert property: the
cuboctahedron A cuboctahedron is a polyhedron with 8 triangular faces and 6 square faces. A cuboctahedron has 12 identical vertices, with 2 triangles and 2 squares meeting at each, and 24 identical edges, each separating a triangle from a square. As such, it ...
,
truncated octahedron In geometry, the truncated octahedron is the Archimedean solid that arises from a regular octahedron by removing six pyramids, one at each of the octahedron's vertices. The truncated octahedron has 14 faces (8 regular hexagons and 6 squares), 36 ...
,
truncated cube In geometry, the truncated cube, or truncated hexahedron, is an Archimedean solid. It has 14 regular faces (6 octagonal and 8 triangular), 36 edges, and 24 vertices. If the truncated cube has unit edge length, its dual triakis octahedron has edg ...
,
rhombicuboctahedron In geometry, the rhombicuboctahedron, or small rhombicuboctahedron, is a polyhedron with eight triangular, six square, and twelve rectangular faces. There are 24 identical vertices, with one triangle, one square, and two rectangles meeting at ea ...
,
icosidodecahedron In geometry, an icosidodecahedron is a polyhedron with twenty (''icosi'') triangular faces and twelve (''dodeca'') pentagonal faces. An icosidodecahedron has 30 identical vertices, with two triangles and two pentagons meeting at each, and 60 i ...
, truncated cuboctahedron,
truncated icosahedron In geometry, the truncated icosahedron is an Archimedean solid, one of 13 convex isogonal nonprismatic solids whose 32 faces are two or more types of regular polygons. It is the only one of these shapes that does not contain triangles or squares. ...
,
truncated dodecahedron In geometry, the truncated dodecahedron is an Archimedean solid. It has 12 regular decagonal faces, 20 regular triangular faces, 60 vertices and 90 edges. Geometric relations This polyhedron can be formed from a regular dodecahedron by tr ...
, and the
truncated tetrahedron In geometry, the truncated tetrahedron is an Archimedean solid. It has 4 regular hexagonal faces, 4 equilateral triangle faces, 12 vertices and 18 edges (of two types). It can be constructed by truncation (geometry), truncating all 4 vertices of ...
, as well as the truncated icosidodecahedron. It has been conjectured that all 3-dimensional convex polyhedra have this property, but also that the
rhombicosidodecahedron In geometry, the rhombicosidodecahedron is an Archimedean solid, one of thirteen convex isogonal nonprismatic solids constructed of two or more types of regular polygon faces. It has 20 regular triangular faces, 30 square faces, 12 regular pen ...
does not have Rupert's property. Cubes and all rectangular solids have Rupert passages in every direction that is not parallel to any of their faces. Another way to express the same problem is to ask for the largest
square In Euclidean geometry, a square is a regular quadrilateral, which means that it has four equal sides and four equal angles (90- degree angles, π/2 radian angles, or right angles). It can also be defined as a rectangle with two equal-length a ...
that lies within a unit cube. More generally, show how to find the largest rectangle of a given aspect ratio that lies within a unit cube. As they observe, the optimal rectangle must always be centered at the center of the cube, with its vertices on edges of the cube. Depending on its aspect ratio, the ratio between its long and short sides, there are two cases for how it can be placed within the cube. For an aspect ratio of \sqrt2 or more, the optimal rectangle lies within the rectangle connecting two opposite edges of the cube, which has aspect ratio exactly \sqrt2. For aspect ratios closer to 1 (including aspect ratio 1 for the square of Prince Rupert's cube), two of the four vertices of an optimal rectangle are equidistant from a vertex of the cube, along two of the three edges touching that vertex. The other two rectangle vertices are the reflections of the first two across the center of the cube. If the aspect ratio is not constrained, the rectangle with the largest area that fits within a cube is the one of aspect ratio \sqrt2 that has two opposite edges of the cube as two of its sides, and two face diagonals as the other two sides. For all n\geq 2, the hypercube also has the Rupert property. Moreover, one may ask for the largest m-dimensional hypercube that may be drawn within an n-dimensional unit hypercube. The answer is always an algebraic number. For instance, the problem for (m,n)=(3,4) asks for the largest (three-dimensional) cube within a four-dimensional hypercube. After
Martin Gardner Martin Gardner (October 21, 1914May 22, 2010) was an American popular mathematics and popular science writer with interests also encompassing scientific skepticism, micromagic, philosophy, religion, and literatureespecially the writings of Lew ...
posed this question in ''
Scientific American ''Scientific American'', informally abbreviated ''SciAm'' or sometimes ''SA'', is an American popular science magazine. Many famous scientists, including Albert Einstein and Nikola Tesla, have contributed articles to it. In print since 1845, it ...
'', Kay R. Pechenick DeVicci and several other readers showed that the answer for the (3,4) case is the
square root In mathematics, a square root of a number is a number such that ; in other words, a number whose ''square'' (the result of multiplying the number by itself, or  ⋅ ) is . For example, 4 and −4 are square roots of 16, because . ...
of the smaller of two real roots of the
polynomial In mathematics, a polynomial is an expression consisting of indeterminates (also called variables) and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables. An example ...
4x^4-28x^3-7x^2+16x+16, which works out to approximately 1.007435. For m=2, the optimal side length of the largest square in an n-dimensional hypercube is either \sqrt or \sqrt, depending on whether n is even or odd respectively.


References


External links

*{{mathworld , urlname = PrinceRupertsCube , title = Prince Rupert's Cube, mode=cs2 Cubes