List of states of matter
   HOME

TheInfoList



OR:

States of matter In physics, a state of matter is one of the distinct forms in which matter can exist. Four states of matter are observable in everyday life: solid, liquid, gas, and plasma. Many intermediate states are known to exist, such as liquid crystal, ...
are distinguished by changes in the properties of matter associated with external factors like
pressure Pressure (symbol: ''p'' or ''P'') is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure (also spelled ''gage'' pressure)The preferred spelling varies by country and e ...
and
temperature Temperature is a physical quantity that expresses quantitatively the perceptions of hotness and coldness. Temperature is measured with a thermometer. Thermometers are calibrated in various temperature scales that historically have relied o ...
. States are usually distinguished by a discontinuity in one of those properties—for example, raising the temperature of ice produces a discontinuity in an increase in temperature. The three classical states of matter are
solid Solid is one of the State of matter#Four fundamental states, four fundamental states of matter (the others being liquid, gas, and Plasma (physics), plasma). The molecules in a solid are closely packed together and contain the least amount o ...
,
liquid A liquid is a nearly incompressible fluid that conforms to the shape of its container but retains a (nearly) constant volume independent of pressure. As such, it is one of the four fundamental states of matter (the others being solid, gas, a ...
and
gas Gas is one of the four fundamental states of matter (the others being solid, liquid, and plasma). A pure gas may be made up of individual atoms (e.g. a noble gas like neon), elemental molecules made from one type of atom (e.g. oxygen), or ...
. In the 20th century, however, increased understanding of the more exotic properties of matter resulted in the identification of many additional states of matter, none of which are observed in normal conditions.


Low-energy states of matter


Classical states

*
Solid Solid is one of the State of matter#Four fundamental states, four fundamental states of matter (the others being liquid, gas, and Plasma (physics), plasma). The molecules in a solid are closely packed together and contain the least amount o ...
: A solid holds a definite shape and
volume Volume is a measure of occupied three-dimensional space. It is often quantified numerically using SI derived units (such as the cubic metre and litre) or by various imperial or US customary units (such as the gallon, quart, cubic inch). Th ...
without a container. The particles are held very close to each other. **
Amorphous solid In condensed matter physics and materials science, an amorphous solid (or non-crystalline solid, glassy solid) is a solid that lacks the long-range order that is characteristic of a crystal. Etymology The term comes from the Greek ''a'' ("wit ...
: A solid in which there is no far-range order of the positions of the atoms. **
Crystalline solid A crystal or crystalline solid is a solid material whose constituents (such as atoms, molecules, or ions) are arranged in a highly ordered microscopic structure, forming a crystal lattice that extends in all directions. In addition, macros ...
: A solid in which atoms, molecules, or ions are packed in regular order. **
Plastic crystal A plastic crystal is a crystal composed of weakly interacting molecules that possess some orientational or conformational degree of freedom. The name plastic crystal refers to the mechanical softness of such phases: they resemble waxes and are easil ...
: A molecular solid with long-range positional order but with constituent molecules retaining rotational freedom. ** Quasi-crystal: A solid in which the positions of the atoms have long-range order, but this is not in a repeating pattern. *
Liquid A liquid is a nearly incompressible fluid that conforms to the shape of its container but retains a (nearly) constant volume independent of pressure. As such, it is one of the four fundamental states of matter (the others being solid, gas, a ...
: A mostly non-compressible
fluid In physics, a fluid is a liquid, gas, or other material that continuously deforms (''flows'') under an applied shear stress, or external force. They have zero shear modulus, or, in simpler terms, are substances which cannot resist any shear ...
. Able to conform to the shape of its container but retains a (nearly) constant volume independent of pressure. **
Liquid crystal Liquid crystal (LC) is a state of matter whose properties are between those of conventional liquids and those of solid crystals. For example, a liquid crystal may flow like a liquid, but its molecules may be oriented in a crystal-like way. T ...
: Properties intermediate between liquids and crystals. Generally, able to flow like a liquid but exhibiting long-range order. *
Gas Gas is one of the four fundamental states of matter (the others being solid, liquid, and plasma). A pure gas may be made up of individual atoms (e.g. a noble gas like neon), elemental molecules made from one type of atom (e.g. oxygen), or ...
: A compressible fluid. Not only will a gas take the shape of its container but it will also expand to fill the container.


Modern states

*
Plasma Plasma or plasm may refer to: Science * Plasma (physics), one of the four fundamental states of matter * Plasma (mineral), a green translucent silica mineral * Quark–gluon plasma, a state of matter in quantum chromodynamics Biology * Blood pla ...
: Free charged particles, usually in equal numbers, such as ions and electrons. Unlike gases, plasma may self-generate magnetic fields and electric currents and respond strongly and collectively to electromagnetic forces. Plasma is very uncommon on Earth (except for the
ionosphere The ionosphere () is the ionized part of the upper atmosphere of Earth, from about to above sea level, a region that includes the thermosphere and parts of the mesosphere and exosphere. The ionosphere is ionized by solar radiation. It plays an ...
), although it is the most common state of matter in the universe. *
Supercritical fluid A supercritical fluid (SCF) is any substance at a temperature and pressure above its critical point, where distinct liquid and gas phases do not exist, but below the pressure required to compress it into a solid. It can effuse through porous so ...
: At sufficiently high temperatures and pressures, the distinction between liquid and gas disappears. *
Degenerate matter Degenerate matter is a highly dense state of fermionic matter in which the Pauli exclusion principle exerts significant pressure in addition to, or in lieu of, thermal pressure. The description applies to matter composed of electrons, protons, neu ...
: matter under very high pressure, supported by the
Pauli exclusion principle In quantum mechanics, the Pauli exclusion principle states that two or more identical particles with half-integer spins (i.e. fermions) cannot occupy the same quantum state within a quantum system simultaneously. This principle was formulated ...
. **
Electron-degenerate matter Degenerate matter is a highly dense state of fermionic matter in which the Pauli exclusion principle exerts significant pressure in addition to, or in lieu of, thermal pressure. The description applies to matter composed of electrons, protons, neu ...
: found inside
white dwarf A white dwarf is a stellar core remnant composed mostly of electron-degenerate matter. A white dwarf is very dense: its mass is comparable to the Sun's, while its volume is comparable to the Earth's. A white dwarf's faint luminosity comes fro ...
stars. Electrons remain bound to atoms but can transfer to adjacent atoms. **
Neutron-degenerate matter Degenerate matter is a highly dense state of fermionic matter in which the Pauli exclusion principle exerts significant pressure in addition to, or in lieu of, thermal pressure. The description applies to matter composed of electrons, protons, neu ...
: found in
neutron star A neutron star is the collapsed core of a massive supergiant star, which had a total mass of between 10 and 25 solar masses, possibly more if the star was especially metal-rich. Except for black holes and some hypothetical objects (e.g. white ...
s. Vast gravitational pressure compresses atoms so strongly that the electrons are forced to combine with protons via inverse beta decay, resulting in a super dense conglomeration of neutrons. (Normally free neutrons outside an atomic nucleus will
decay Decay may refer to: Science and technology * Bit decay, in computing * Software decay, in computing * Distance decay, in geography * Decay time (fall time), in electronics Biology * Decomposition of organic matter * Tooth decay (dental caries ...
with a half-life of just under fifteen minutes, but in a neutron star, as in the nucleus of an atom, other effects stabilize the neutrons.) **
Strange matter Strange matter (or strange quark matter) is quark matter containing strange quarks. In nature, strange matter is hypothesized to occur in the core of neutron stars, or, more speculatively, as isolated droplets that may vary in size from femtomet ...
: A type of
quark matter Quark matter or QCD matter (quantum chromodynamics, quantum chromodynamic) refers to any of a number of hypothetical phase (matter), phases of matter whose degrees of freedom (physics and chemistry), degrees of freedom include quarks and gluons, of ...
that may exist inside some neutron stars close to the
Tolman–Oppenheimer–Volkoff limit The Tolman–Oppenheimer–Volkoff limit (or TOV limit) is an upper bound to the mass of cold, nonrotating neutron stars, analogous to the Chandrasekhar limit for white dwarf stars. If the mass of the said star reaches the limit it will collapse to ...
(approximately 2–3
solar mass The solar mass () is a standard unit of mass in astronomy, equal to approximately . It is often used to indicate the masses of other stars, as well as stellar clusters, nebulae, galaxies and black holes. It is approximately equal to the mass ...
es). May be stable at lower energy states once formed. ** Quantum spin Hall state: a theoretical phase that may pave the way for developing electronic devices that dissipate less energy and generate less heat. This is a derivation of the quantum Hall state of matter. *
Bose–Einstein condensate In condensed matter physics, a Bose–Einstein condensate (BEC) is a state of matter that is typically formed when a gas of bosons at very low densities is cooled to temperatures very close to absolute zero (−273.15 °C or −459.67&n ...
: a phase in which a large number of
boson In particle physics, a boson ( ) is a subatomic particle whose spin quantum number has an integer value (0,1,2 ...). Bosons form one of the two fundamental classes of subatomic particle, the other being fermions, which have odd half-integer s ...
s all inhabit the same
quantum state In quantum physics, a quantum state is a mathematical entity that provides a probability distribution for the outcomes of each possible measurement on a system. Knowledge of the quantum state together with the rules for the system's evolution in ...
, in effect becoming one single wave/particle. This is a low-energy phase that can only be formed in laboratory conditions and at very low temperatures. It must be close to zero kelvin, or
absolute zero Absolute zero is the lowest limit of the thermodynamic temperature scale, a state at which the enthalpy and entropy of a cooled ideal gas reach their minimum value, taken as zero kelvin. The fundamental particles of nature have minimum vibration ...
.
Satyendra Nath Bose Satyendra Nath Bose (; 1 January 1894 – 4 February 1974) was a Bengali mathematician and physicist specializing in theoretical physics. He is best known for his work on quantum mechanics in the early 1920s, in developing the foundation for ...
and
Albert Einstein Albert Einstein ( ; ; 14 March 1879 – 18 April 1955) was a German-born theoretical physicist, widely acknowledged to be one of the greatest and most influential physicists of all time. Einstein is best known for developing the theory ...
predicted the existence of such a state in the 1920s, but it was not observed until 1995 by
Eric Cornell Eric Allin Cornell (born December 19, 1961) is an American physicist who, along with Carl E. Wieman, was able to synthesize the first Bose–Einstein condensate in 1995. For their efforts, Cornell, Wieman, and Wolfgang Ketterle shared the Nobel ...
and
Carl Wieman Carl Edwin Wieman (born March 26, 1951) is an American physicist and educationist at Stanford University, and currently the A.D White Professor at Large at Cornell University. In 1995, while at the University of Colorado Boulder, he and Eric All ...
. *
Fermionic condensate A fermionic condensate or Fermi–Dirac condensate is a superfluid phase formed by fermionic particles at low temperatures. It is closely related to the Bose–Einstein condensate, a superfluid phase formed by bosonic atoms under similar condit ...
: Similar to the Bose-Einstein condensate but composed of
fermion In particle physics, a fermion is a particle that follows Fermi–Dirac statistics. Generally, it has a half-odd-integer spin: spin , spin , etc. In addition, these particles obey the Pauli exclusion principle. Fermions include all quarks an ...
s, also known as Fermi-Dirac condensate. The
Pauli exclusion principle In quantum mechanics, the Pauli exclusion principle states that two or more identical particles with half-integer spins (i.e. fermions) cannot occupy the same quantum state within a quantum system simultaneously. This principle was formulated ...
prevents fermions from entering the same quantum state, but a pair of fermions can behave like a boson, and multiple such pairs can then enter the same quantum state without restriction. *
Superconductivity Superconductivity is a set of physical properties observed in certain materials where electrical resistance vanishes and magnetic flux fields are expelled from the material. Any material exhibiting these properties is a superconductor. Unlike ...
: is a phenomenon of exactly zero
electrical resistance The electrical resistance of an object is a measure of its opposition to the flow of electric current. Its reciprocal quantity is , measuring the ease with which an electric current passes. Electrical resistance shares some conceptual parallels ...
and expulsion of
magnetic field A magnetic field is a vector field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to ...
s occurring in certain materials when cooled below a characteristic
critical temperature Critical or Critically may refer to: *Critical, or critical but stable, medical states **Critical, or intensive care medicine *Critical juncture, a discontinuous change studied in the social sciences. *Critical Software, a company specializing in ...
. Superconductivity is the ground state of many elemental metals. *
Superfluid Superfluidity is the characteristic property of a fluid with zero viscosity which therefore flows without any loss of kinetic energy. When stirred, a superfluid forms vortices that continue to rotate indefinitely. Superfluidity occurs in two ...
: A phase achieved by a few
cryogenic In physics, cryogenics is the production and behaviour of materials at very low temperatures. The 13th IIR International Congress of Refrigeration (held in Washington DC in 1971) endorsed a universal definition of “cryogenics” and “cr ...
liquids at extreme temperature at which they become able to flow without
friction Friction is the force resisting the relative motion of solid surfaces, fluid layers, and material elements sliding against each other. There are several types of friction: *Dry friction is a force that opposes the relative lateral motion of t ...
. A superfluid can flow up the side of an open container and down the outside. Placing a superfluid in a spinning container will result in
quantized vortices In physics, a quantum vortex represents a quantized flux circulation of some physical quantity. In most cases, quantum vortices are a type of topological defect exhibited in superfluids and superconductors. The existence of quantum vortices was f ...
. * Supersolid: similar to a superfluid, a supersolid can move without friction but retains a rigid shape. *
Quantum spin liquid In condensed matter physics, a quantum spin liquid is a phase of matter that can be formed by interacting quantum spins in certain magnetic materials. Quantum spin liquids (QSL) are generally characterized by their long-range quantum entangleme ...
: A disordered state in a system of interacting quantum spins which preserves its disorder to shallow temperatures, unlike other disordered states. *
String-net liquid In condensed matter physics, a string-net is an extended object whose collective behavior has been proposed as a physical mechanism for topological order by Michael A. Levin and Xiao-Gang Wen. A particular string-net model may involve only clos ...
: Atoms in this state have unstable arrangements, like a liquid, but are still consistent in the overall pattern, like a solid. *
Time crystals In condensed matter physics, a time crystal is a quantum system of particles whose lowest-energy state is one in which the particles are in repetitive motion. The system cannot lose energy to the environment and come to rest because it is alre ...
: A state of matter where an object can have movement even at its lowest energy state. *
Rydberg polaron A Rydberg polaron is an exotic state of matter, created at low temperatures, in which a very large atom contains other ordinary atoms in the space between the nucleus and the electrons. For the formation of this atom, scientists had to combine two ...
: A state of matter that can only exist at ultra-low temperatures and consists of atoms inside of atoms. * Black superionic ice: A state of matter that can exist under very high pressure while excited by super lasers.


High energy states

*
Quark–gluon plasma Quark–gluon plasma (QGP) or quark soup is an interacting localized assembly of quarks and gluons at thermal (local kinetic) and (close to) chemical (abundance) equilibrium. The word ''plasma'' signals that free color charges are allowed. In a 1 ...
: A phase in which
quark A quark () is a type of elementary particle and a fundamental constituent of matter. Quarks combine to form composite particles called hadrons, the most stable of which are protons and neutrons, the components of atomic nuclei. All commonly o ...
s become free and able to move independently (rather than being perpetually bound into particles, or bound to each other in a quantum lock where exerting force adds energy and eventually solidifies into another quark) in an ocean of
gluon A gluon ( ) is an elementary particle that acts as the exchange particle (or gauge boson) for the strong force between quarks. It is analogous to the exchange of photons in the electromagnetic force between two charged particles. Gluons bind q ...
s (subatomic particles that transmit the
strong force The strong interaction or strong force is a fundamental interaction that confines quarks into proton, neutron, and other hadron particles. The strong interaction also binds neutrons and protons to create atomic nuclei, where it is called the n ...
that binds quarks together). May be briefly attainable in
particle accelerator A particle accelerator is a machine that uses electromagnetic fields to propel charged particles to very high speeds and energies, and to contain them in well-defined beams. Large accelerators are used for fundamental research in particle ...
s, or possibly inside
neutron stars A neutron star is the collapsed core of a massive supergiant star, which had a total mass of between 10 and 25 solar masses, possibly more if the star was especially metal-rich. Except for black holes and some hypothetical objects (e.g. white ...
. * For up to 10−35 seconds after the
Big Bang The Big Bang event is a physical theory that describes how the universe expanded from an initial state of high density and temperature. Various cosmological models of the Big Bang explain the evolution of the observable universe from the ...
, the energy density of the universe was so high that the four forces of naturestrong, weak,
electromagnetic In physics, electromagnetism is an interaction that occurs between particles with electric charge. It is the second-strongest of the four fundamental interactions, after the strong force, and it is the dominant force in the interactions of a ...
, and
gravitation In physics, gravity () is a fundamental interaction which causes mutual attraction between all things with mass or energy. Gravity is, by far, the weakest of the four fundamental interactions, approximately 1038 times weaker than the stron ...
al – are thought to have been unified into one single force. The state of matter at this time is unknown. As the universe expanded, the temperature and density dropped and the gravitational force separated, a process called
symmetry breaking In physics, symmetry breaking is a phenomenon in which (infinitesimally) small fluctuations acting on a system crossing a critical point decide the system's fate, by determining which branch of a bifurcation is taken. To an outside observe ...
.


See also

*
Electron quadruplets Electron quadruplets are a possible phenomenon in an exotic state of matter in which Cooper pairs do not exhibit long-range order, but electron quadruplets do. This "quartic metal" phase is related to but distinct from those superconductors expl ...


References

{{DEFAULTSORT:States Of Matter Physics-related lists + fr:Liste des états de la matière it:Stati della materia th:รายชื่อสถานะของสสาร