List of square roots
   HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, a square root of a number is a number such that ; in other words, a number whose ''
square In Euclidean geometry, a square is a regular quadrilateral, which means that it has four equal sides and four equal angles (90- degree angles, π/2 radian angles, or right angles). It can also be defined as a rectangle with two equal-length a ...
'' (the result of multiplying the number by itself, or  ⋅ ) is . For example, 4 and −4 are square roots of 16, because . Every
nonnegative In mathematics, the sign of a real number is its property of being either positive, negative, or zero. Depending on local conventions, zero may be considered as being neither positive nor negative (having no sign or a unique third sign), or it ...
real number In mathematics, a real number is a number that can be used to measure a ''continuous'' one-dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every ...
has a unique nonnegative square root, called the ''principal square root'', which is denoted by \sqrt, where the symbol \sqrt is called the ''
radical sign In mathematics, the radical sign, radical symbol, root symbol, radix, or surd is a symbol for the square root or higher-order root of a number. The square root of a number x is written as :\sqrt, while the nth root of x is written as :\sqrt ...
'' or ''radix''. For example, to express the fact that the principal square root of 9 is 3, we write \sqrt = 3. The term (or number) whose square root is being considered is known as the ''radicand''. The radicand is the number or expression underneath the radical sign, in this case 9. For nonnegative , the principal square root can also be written in
exponent Exponentiation is a mathematical operation, written as , involving two numbers, the '' base'' and the ''exponent'' or ''power'' , and pronounced as " (raised) to the (power of) ". When is a positive integer, exponentiation corresponds to r ...
notation, as . Every
positive number In mathematics, the sign of a real number is its property of being either positive, negative, or zero. Depending on local conventions, zero may be considered as being neither positive nor negative (having no sign or a unique third sign), or it ...
has two square roots: \sqrt, which is positive, and -\sqrt, which is negative. The two roots can be written more concisely using the ± sign as \plusmn\sqrt. Although the principal square root of a positive number is only one of its two square roots, the designation "''the'' square root" is often used to refer to the principal square root. Square roots of negative numbers can be discussed within the framework of
complex number In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the fo ...
s. More generally, square roots can be considered in any context in which a notion of the "
square In Euclidean geometry, a square is a regular quadrilateral, which means that it has four equal sides and four equal angles (90- degree angles, π/2 radian angles, or right angles). It can also be defined as a rectangle with two equal-length a ...
" of a mathematical object is defined. These include
function space In mathematics, a function space is a set of functions between two fixed sets. Often, the domain and/or codomain will have additional structure which is inherited by the function space. For example, the set of functions from any set into a vect ...
s and
square matrices In mathematics, a square matrix is a matrix with the same number of rows and columns. An ''n''-by-''n'' matrix is known as a square matrix of order Any two square matrices of the same order can be added and multiplied. Square matrices are often ...
, among other
mathematical structure In mathematics, a structure is a set endowed with some additional features on the set (e.g. an operation, relation, metric, or topology). Often, the additional features are attached or related to the set, so as to provide it with some additiona ...
s.


History

The
Yale Babylonian Collection Comprising some 45,000 items, the Yale Babylonian Collection is an independent branch of the Yale University Library housed on the Yale University campus in Sterling Memorial Library at New Haven, Connecticut, United States. In 2017, the collec ...
YBC 7289 YBC 7289 is a Babylonian clay tablet notable for containing an accurate sexagesimal approximation to the square root of 2, the length of the diagonal of a unit square. This number is given to the equivalent of six decimal digits, "the greatest ...
clay tablet was created between 1800 BC and 1600 BC, showing \sqrt and \frac = \frac respectively as 1;24,51,10 and 0;42,25,35
base 60 Sexagesimal, also known as base 60 or sexagenary, is a numeral system with 60 (number), sixty as its radix, base. It originated with the ancient Sumerians in the 3rd millennium BC, was passed down to the ancient Babylonians, and is still used—in ...
numbers on a square crossed by two diagonals. (1;24,51,10) base 60 corresponds to 1.41421296, which is a correct value to 5 decimal points (1.41421356...). The
Rhind Mathematical Papyrus The Rhind Mathematical Papyrus (RMP; also designated as papyrus British Museum 10057 and pBM 10058) is one of the best known examples of ancient Egyptian mathematics. It is named after Alexander Henry Rhind, a Scotland, Scottish antiquarian, who ...
is a copy from 1650 BC of an earlier
Berlin Papyrus Berlin Papyrus may refer to several papyri kept in the Egyptian Museum of Berlin, including: * Berlin Papyrus 3033 or the Westcar Papyrus The Westcar Papyrus (inventory-designation: ''P. Berlin 3033'') is an ancient Egyptian text containing five ...
and other textspossibly the
Kahun Papyrus The Kahun Papyri (KP; also Petrie Papyri or Lahun Papyri) are a collection of ancient Egyptian texts discussing administrative, mathematical and medical topics. Its many fragments were discovered by Flinders Petrie in 1889 and are kept at the U ...
that shows how the Egyptians extracted square roots by an inverse proportion method. In
Ancient India According to consensus in modern genetics, anatomically modern humans first arrived on the Indian subcontinent from Africa between 73,000 and 55,000 years ago. Quote: "Y-Chromosome and Mt-DNA data support the colonization of South Asia by ...
, the knowledge of theoretical and applied aspects of square and square root was at least as old as the ''
Sulba Sutras The ''Shulva Sutras'' or ''Śulbasūtras'' (Sanskrit: शुल्बसूत्र; ': "string, cord, rope") are sutra texts belonging to the Śrauta ritual and containing geometry related to fire-altar construction. Purpose and origins The ...
'', dated around 800–500 BC (possibly much earlier). A method for finding very good approximations to the square roots of 2 and 3 are given in the ''
Baudhayana Sulba Sutra The (Sanskrit: बौधायन) are a group of Vedic Sanskrit texts which cover dharma, daily ritual, mathematics and is one of the oldest Dharma-related texts of Hinduism that have survived into the modern age from the 1st-millennium BCE. Th ...
''.
Aryabhata Aryabhata ( ISO: ) or Aryabhata I (476–550 CE) was an Indian mathematician and astronomer of the classical age of Indian mathematics and Indian astronomy. He flourished in the Gupta Era and produced works such as the ''Aryabhatiya'' (which ...
, in the ''
Aryabhatiya ''Aryabhatiya'' (IAST: ') or ''Aryabhatiyam'' ('), a Sanskrit astronomical treatise, is the '' magnum opus'' and only known surviving work of the 5th century Indian mathematician Aryabhata. Philosopher of astronomy Roger Billard estimates that ...
'' (section 2.4), has given a method for finding the square root of numbers having many digits. It was known to the ancient Greeks that square roots of
positive integers In mathematics, the natural numbers are those numbers used for counting (as in "there are ''six'' coins on the table") and ordering (as in "this is the ''third'' largest city in the country"). Numbers used for counting are called '' cardinal ...
that are not perfect squares are always
irrational number In mathematics, the irrational numbers (from in- prefix assimilated to ir- (negative prefix, privative) + rational) are all the real numbers that are not rational numbers. That is, irrational numbers cannot be expressed as the ratio of two inte ...
s: numbers not expressible as a
ratio In mathematics, a ratio shows how many times one number contains another. For example, if there are eight oranges and six lemons in a bowl of fruit, then the ratio of oranges to lemons is eight to six (that is, 8:6, which is equivalent to the ...
of two integers (that is, they cannot be written exactly as \frac, where ''m'' and ''n'' are integers). This is the theorem ''Euclid X, 9'', almost certainly due to
Theaetetus Theaetetus (Θεαίτητος) is a Greek name which could refer to: * Theaetetus (mathematician) (c. 417 BC – 369 BC), Greek geometer * ''Theaetetus'' (dialogue), a dialogue by Plato, named after the geometer * Theaetetus (crater) Theaetetus ...
dating back to circa 380 BC. The particular case of the
square root of 2 The square root of 2 (approximately 1.4142) is a positive real number that, when multiplied by itself, equals the number 2. It may be written in mathematics as \sqrt or 2^, and is an algebraic number. Technically, it should be called the princi ...
is assumed to date back earlier to the
Pythagoreans Pythagoreanism originated in the 6th century BC, based on and around the teachings and beliefs held by Pythagoras and his followers, the Pythagoreans. Pythagoras established the first Pythagorean community in the ancient Greek colony of Kroton, ...
, and is traditionally attributed to
Hippasus Hippasus of Metapontum (; grc-gre, Ἵππασος ὁ Μεταποντῖνος, ''Híppasos''; c. 530 – c. 450 BC) was a Greek philosopher and early follower of Pythagoras. Little is known about his life or his beliefs, but he is sometimes c ...
. It is exactly the length of the
diagonal In geometry, a diagonal is a line segment joining two vertices of a polygon or polyhedron, when those vertices are not on the same edge. Informally, any sloping line is called diagonal. The word ''diagonal'' derives from the ancient Greek δ ...
of a square with side length 1. In the Chinese mathematical work '' Writings on Reckoning'', written between 202 BC and 186 BC during the early
Han Dynasty The Han dynasty (, ; ) was an Dynasties in Chinese history, imperial dynasty of China (202 BC – 9 AD, 25–220 AD), established by Emperor Gaozu of Han, Liu Bang (Emperor Gao) and ruled by the House of Liu. The dynasty was preceded by th ...
, the square root is approximated by using an "excess and deficiency" method, which says to "...combine the excess and deficiency as the divisor; (taking) the deficiency numerator multiplied by the excess denominator and the excess numerator times the deficiency denominator, combine them as the dividend." A symbol for square roots, written as an elaborate R, was invented by
Regiomontanus Johannes Müller von Königsberg (6 June 1436 – 6 July 1476), better known as Regiomontanus (), was a mathematician, astrologer and astronomer of the German Renaissance, active in Vienna, Buda and Nuremberg. His contributions were instrument ...
(1436–1476). An R was also used for radix to indicate square roots in
Gerolamo Cardano Gerolamo Cardano (; also Girolamo or Geronimo; french: link=no, Jérôme Cardan; la, Hieronymus Cardanus; 24 September 1501– 21 September 1576) was an Italian polymath, whose interests and proficiencies ranged through those of mathematician, ...
's '' Ars Magna''. According to historian of mathematics D.E. Smith, Aryabhata's method for finding the square root was first introduced in Europe by Cataneo—in 1546. According to Jeffrey A. Oaks, Arabs used the letter '' jīm/ĝīm'' (), the first letter of the word "" (variously transliterated as ''jaḏr'', ''jiḏr'', ''ǧaḏr'' or ''ǧiḏr'', "root"), placed in its initial form () over a number to indicate its square root. The letter ''jīm'' resembles the present square root shape. Its usage goes as far as the end of the twelfth century in the works of the Moroccan mathematician
Ibn al-Yasamin Abu Muhammad 'Abdallah ibn Muhammad ibn Hajjaj ibn al-Yasmin al-Adrini al-Fessi () (died 1204) more commonly known as ibn al-Yasmin, was a Berber mathematician, born in Morocco and he received his education in Fez and Sevilla. Little is known of ...
. The symbol "√" for the square root was first used in print in 1525, in Christoph Rudolff's ''Coss''.


Properties and uses

The principal square root function f(x) = \sqrt (usually just referred to as the "square root function") is a
function Function or functionality may refer to: Computing * Function key, a type of key on computer keyboards * Function model, a structured representation of processes in a system * Function object or functor or functionoid, a concept of object-oriente ...
that maps the
set Set, The Set, SET or SETS may refer to: Science, technology, and mathematics Mathematics *Set (mathematics), a collection of elements *Category of sets, the category whose objects and morphisms are sets and total functions, respectively Electro ...
of nonnegative real numbers onto itself. In
geometrical Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is c ...
terms, the square root function maps the
area Area is the quantity that expresses the extent of a region on the plane or on a curved surface. The area of a plane region or ''plane area'' refers to the area of a shape or planar lamina, while '' surface area'' refers to the area of an op ...
of a square to its side length. The square root of ''x'' is rational if and only if ''x'' is a
rational number In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (e.g. ). The set of all ra ...
that can be represented as a ratio of two perfect squares. (See
square root of 2 The square root of 2 (approximately 1.4142) is a positive real number that, when multiplied by itself, equals the number 2. It may be written in mathematics as \sqrt or 2^, and is an algebraic number. Technically, it should be called the princi ...
for proofs that this is an irrational number, and
quadratic irrational In mathematics, a quadratic irrational number (also known as a quadratic irrational, a quadratic irrationality or quadratic surd) is an irrational number that is the solution to some quadratic equation with rational coefficients which is irreducibl ...
for a proof for all non-square natural numbers.) The square root function maps rational numbers into
algebraic number An algebraic number is a number that is a root of a non-zero polynomial in one variable with integer (or, equivalently, rational) coefficients. For example, the golden ratio, (1 + \sqrt)/2, is an algebraic number, because it is a root of th ...
s, the latter being a
superset In mathematics, set ''A'' is a subset of a set ''B'' if all elements of ''A'' are also elements of ''B''; ''B'' is then a superset of ''A''. It is possible for ''A'' and ''B'' to be equal; if they are unequal, then ''A'' is a proper subset of ...
of the rational numbers). For all real numbers ''x'', : \sqrt = \left, x\ = \begin x, & \mboxx \ge 0 \\ -x, & \mboxx < 0. \end     (see
absolute value In mathematics, the absolute value or modulus of a real number x, is the non-negative value without regard to its sign. Namely, , x, =x if is a positive number, and , x, =-x if x is negative (in which case negating x makes -x positive), ...
) For all nonnegative real numbers ''x'' and ''y'', :\sqrt = \sqrt x \sqrt y and :\sqrt x = x^. The square root function is
continuous Continuity or continuous may refer to: Mathematics * Continuity (mathematics), the opposing concept to discreteness; common examples include ** Continuous probability distribution or random variable in probability and statistics ** Continuous g ...
for all nonnegative ''x'', and
differentiable In mathematics, a differentiable function of one real variable is a function whose derivative exists at each point in its domain. In other words, the graph of a differentiable function has a non-vertical tangent line at each interior point in its ...
for all positive ''x''. If ''f'' denotes the square root function, whose derivative is given by: :f'(x) = \frac. The
Taylor series In mathematics, the Taylor series or Taylor expansion of a function is an infinite sum of terms that are expressed in terms of the function's derivatives at a single point. For most common functions, the function and the sum of its Taylor ser ...
of \sqrt about ''x'' = 0 converges for ≤ 1, and is given by :\sqrt = \sum_^\infty \fracx^n = 1 + \fracx - \fracx^2 + \frac x^3 - \frac x^4 + \cdots, The square root of a nonnegative number is used in the definition of
Euclidean norm Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean ...
(and
distance Distance is a numerical or occasionally qualitative measurement of how far apart objects or points are. In physics or everyday usage, distance may refer to a physical length or an estimation based on other criteria (e.g. "two counties over"). ...
), as well as in generalizations such as
Hilbert space In mathematics, Hilbert spaces (named after David Hilbert) allow generalizing the methods of linear algebra and calculus from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise natural ...
s. It defines an important concept of
standard deviation In statistics, the standard deviation is a measure of the amount of variation or dispersion of a set of values. A low standard deviation indicates that the values tend to be close to the mean (also called the expected value) of the set, whil ...
used in
probability theory Probability theory is the branch of mathematics concerned with probability. Although there are several different probability interpretations, probability theory treats the concept in a rigorous mathematical manner by expressing it through a set ...
and
statistics Statistics (from German: '' Statistik'', "description of a state, a country") is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of data. In applying statistics to a scientific, indust ...
. It has a major use in the formula for roots of a
quadratic equation In algebra, a quadratic equation () is any equation that can be rearranged in standard form as ax^2 + bx + c = 0\,, where represents an unknown value, and , , and represent known numbers, where . (If and then the equation is linear, not qu ...
;
quadratic field In algebraic number theory, a quadratic field is an algebraic number field of degree two over \mathbf, the rational numbers. Every such quadratic field is some \mathbf(\sqrt) where d is a (uniquely defined) square-free integer different from 0 a ...
s and rings of
quadratic integer In number theory, quadratic integers are a generalization of the usual integers to quadratic fields. Quadratic integers are algebraic integers of degree two, that is, solutions of equations of the form : with and (usual) integers. When algebra ...
s, which are based on square roots, are important in algebra and have uses in geometry. Square roots frequently appear in mathematical formulas elsewhere, as well as in many
physical Physical may refer to: * Physical examination, a regular overall check-up with a doctor * ''Physical'' (Olivia Newton-John album), 1981 ** "Physical" (Olivia Newton-John song) * ''Physical'' (Gabe Gurnsey album) * "Physical" (Alcazar song) (2004) * ...
laws.


Square roots of positive integers

A positive number has two square roots, one positive, and one negative, which are opposite to each other. When talking of ''the'' square root of a positive integer, it is usually the positive square root that is meant. The square roots of an integer are
algebraic integer In algebraic number theory, an algebraic integer is a complex number which is integral over the integers. That is, an algebraic integer is a complex root of some monic polynomial (a polynomial whose leading coefficient is 1) whose coefficients ...
s—more specifically
quadratic integer In number theory, quadratic integers are a generalization of the usual integers to quadratic fields. Quadratic integers are algebraic integers of degree two, that is, solutions of equations of the form : with and (usual) integers. When algebra ...
s. The square root of a positive integer is the product of the roots of its
prime A prime number (or a prime) is a natural number greater than 1 that is not a product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime because the only ways ...
factors, because the square root of a product is the product of the square roots of the factors. Since \sqrt = p^k, only roots of those primes having an odd power in the
factorization In mathematics, factorization (or factorisation, see English spelling differences) or factoring consists of writing a number or another mathematical object as a product of several ''factors'', usually smaller or simpler objects of the same kind ...
are necessary. More precisely, the square root of a prime factorization is :\sqrt=p_1^\dots p_n^\sqrt.


As decimal expansions

The square roots of the perfect squares (e.g., 0, 1, 4, 9, 16) are
integers An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign ( −1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language ...
. In all other cases, the square roots of positive integers are
irrational number In mathematics, the irrational numbers (from in- prefix assimilated to ir- (negative prefix, privative) + rational) are all the real numbers that are not rational numbers. That is, irrational numbers cannot be expressed as the ratio of two inte ...
s, and hence have non-
repeating decimal A repeating decimal or recurring decimal is decimal representation of a number whose digits are periodic (repeating its values at regular intervals) and the infinitely repeated portion is not zero. It can be shown that a number is rational i ...
s in their
decimal representation A decimal representation of a non-negative real number is its expression as a sequence of symbols consisting of decimal digits traditionally written with a single separator: r = b_k b_\ldots b_0.a_1a_2\ldots Here is the decimal separator, i ...
s. Decimal approximations of the square roots of the first few natural numbers are given in the following table. :


As expansions in other numeral systems

As with before, the square roots of the perfect squares (e.g., 0, 1, 4, 9, 16) are integers. In all other cases, the square roots of positive integers are
irrational number In mathematics, the irrational numbers (from in- prefix assimilated to ir- (negative prefix, privative) + rational) are all the real numbers that are not rational numbers. That is, irrational numbers cannot be expressed as the ratio of two inte ...
s, and therefore have non-repeating digits in any standard
positional notation Positional notation (or place-value notation, or positional numeral system) usually denotes the extension to any base of the Hindu–Arabic numeral system (or decimal system). More generally, a positional system is a numeral system in which th ...
system. The square roots of small integers are used in both the
SHA-1 In cryptography, SHA-1 (Secure Hash Algorithm 1) is a cryptographically broken but still widely used hash function which takes an input and produces a 160- bit (20- byte) hash value known as a message digest – typically rendered as 40 hexa ...
and
SHA-2 SHA-2 (Secure Hash Algorithm 2) is a set of cryptographic hash functions designed by the United States National Security Agency (NSA) and first published in 2001. They are built using the Merkle–Damgård construction, from a one-way compres ...
hash function designs to provide nothing up my sleeve numbers.


As periodic continued fractions

One of the most intriguing results from the study of
irrational number In mathematics, the irrational numbers (from in- prefix assimilated to ir- (negative prefix, privative) + rational) are all the real numbers that are not rational numbers. That is, irrational numbers cannot be expressed as the ratio of two inte ...
s as
continued fraction In mathematics, a continued fraction is an expression obtained through an iterative process of representing a number as the sum of its integer part and the reciprocal of another number, then writing this other number as the sum of its integer ...
s was obtained by
Joseph Louis Lagrange Joseph-Louis Lagrange (born Giuseppe Luigi Lagrangiaperiodic. That is, a certain pattern of partial denominators repeats indefinitely in the continued fraction. In a sense these square roots are the very simplest irrational numbers, because they can be represented with a simple repeating pattern of integers. : The
square bracket A bracket is either of two tall fore- or back-facing punctuation marks commonly used to isolate a segment of text or data from its surroundings. Typically deployed in symmetric pairs, an individual bracket may be identified as a 'left' or 'r ...
notation used above is a short form for a continued fraction. Written in the more suggestive algebraic form, the simple continued fraction for the square root of 11, ; 3, 6, 3, 6, ... looks like this: : \sqrt = 3 + \cfrac where the two-digit pattern repeats over and over again in the partial denominators. Since , the above is also identical to the following generalized continued fractions: : \sqrt = 3 + \cfrac = 3 + \cfrac.


Computation

Square roots of positive numbers are not in general
rational number In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (e.g. ). The set of all ra ...
s, and so cannot be written as a terminating or recurring decimal expression. Therefore in general any attempt to compute a square root expressed in decimal form can only yield an approximation, though a sequence of increasingly accurate approximations can be obtained. Most
pocket calculator An electronic calculator is typically a portable electronic device used to perform calculations, ranging from basic arithmetic to complex mathematics. The first solid-state electronic calculator was created in the early 1960s. Pocket-sized ...
s have a square root key. Computer
spreadsheet A spreadsheet is a computer application for computation, organization, analysis and storage of data in tabular form. Spreadsheets were developed as computerized analogs of paper accounting worksheets. The program operates on data entered in ...
s and other
software Software is a set of computer programs and associated documentation and data. This is in contrast to hardware, from which the system is built and which actually performs the work. At the lowest programming level, executable code consist ...
are also frequently used to calculate square roots. Pocket calculators typically implement efficient routines, such as the
Newton's method In numerical analysis, Newton's method, also known as the Newton–Raphson method, named after Isaac Newton and Joseph Raphson, is a root-finding algorithm which produces successively better approximations to the roots (or zeroes) of a real- ...
(frequently with an initial guess of 1), to compute the square root of a positive real number. When computing square roots with
logarithm table In mathematics, the common logarithm is the logarithm with base 10. It is also known as the decadic logarithm and as the decimal logarithm, named after its base, or Briggsian logarithm, after Henry Briggs, an English mathematician who pioneered i ...
s or
slide rule The slide rule is a mechanical analog computer which is used primarily for multiplication and division, and for functions such as exponents, roots, logarithms, and trigonometry. It is not typically designed for addition or subtraction, which ...
s, one can exploit the identities :\sqrt = e^ = 10^, where and 10 are the
natural Nature, in the broadest sense, is the physical world or universe. "Nature" can refer to the phenomena of the physical world, and also to life in general. The study of nature is a large, if not the only, part of science. Although humans ar ...
and
base-10 logarithm In mathematics, the common logarithm is the logarithm with base 10. It is also known as the decadic logarithm and as the decimal logarithm, named after its base, or Briggsian logarithm, after Henry Briggs, an English mathematician who pioneered ...
s. By trial-and-error, one can square an estimate for \sqrt and raise or lower the estimate until it agrees to sufficient accuracy. For this technique it is prudent to use the identity :(x + c)^2 = x^2 + 2xc + c^2, as it allows one to adjust the estimate ''x'' by some amount ''c'' and measure the square of the adjustment in terms of the original estimate and its square. Furthermore, (''x'' + ''c'')2 ≈ ''x''2 + 2''xc'' when ''c'' is close to 0, because the
tangent line In geometry, the tangent line (or simply tangent) to a plane curve at a given point is the straight line that "just touches" the curve at that point. Leibniz defined it as the line through a pair of infinitely close points on the curve. Mo ...
to the graph of ''x''2 + 2''xc'' + ''c''2 at ''c'' = 0, as a function of ''c'' alone, is ''y'' = 2''xc'' + ''x''2. Thus, small adjustments to ''x'' can be planned out by setting 2''xc'' to ''a'', or ''c'' = ''a''/(2''x''). The most common
iterative method In computational mathematics, an iterative method is a mathematical procedure that uses an initial value to generate a sequence of improving approximate solutions for a class of problems, in which the ''n''-th approximation is derived from the pre ...
of square root calculation by hand is known as the " Babylonian method" or "Heron's method" after the first-century Greek philosopher
Heron of Alexandria Hero of Alexandria (; grc-gre, Ἥρων ὁ Ἀλεξανδρεύς, ''Heron ho Alexandreus'', also known as Heron of Alexandria ; 60 AD) was a Greek mathematician and engineer who was active in his native city of Alexandria, Roman Egypt. He i ...
, who first described it. The method uses the same iterative scheme as the
Newton–Raphson method In numerical analysis, Newton's method, also known as the Newton–Raphson method, named after Isaac Newton and Joseph Raphson, is a root-finding algorithm which produces successively better approximations to the roots (or zeroes) of a real-va ...
yields when applied to the function y = ''f''(''x'') = ''x''2 − ''a'', using the fact that its slope at any point is ''dy''/''dx'' = '(''x'') = 2''x'', but predates it by many centuries. The algorithm is to repeat a simple calculation that results in a number closer to the actual square root each time it is repeated with its result as the new input. The motivation is that if ''x'' is an overestimate to the square root of a nonnegative real number ''a'' then ''a''/''x'' will be an underestimate and so the average of these two numbers is a better approximation than either of them. However, the
inequality of arithmetic and geometric means In mathematics, the inequality of arithmetic and geometric means, or more briefly the AM–GM inequality, states that the arithmetic mean of a list of non-negative real numbers is greater than or equal to the geometric mean of the same list; and ...
shows this average is always an overestimate of the square root (as noted
below Below may refer to: *Earth *Ground (disambiguation) *Soil *Floor *Bottom (disambiguation) *Less than *Temperatures below freezing *Hell or underworld People with the surname *Ernst von Below (1863–1955), German World War I general *Fred Below ( ...
), and so it can serve as a new overestimate with which to repeat the process, which converges as a consequence of the successive overestimates and underestimates being closer to each other after each iteration. To find ''x'': # Start with an arbitrary positive start value ''x''. The closer to the square root of ''a'', the fewer the iterations that will be needed to achieve the desired precision. # Replace ''x'' by the average (''x'' + ''a''/''x'') / 2 between ''x'' and ''a''/''x''. # Repeat from step 2, using this average as the new value of ''x''. That is, if an arbitrary guess for \sqrt is ''x''0, and , then each xn is an approximation of \sqrt which is better for large ''n'' than for small ''n''. If ''a'' is positive, the convergence is quadratic, which means that in approaching the limit, the number of correct digits roughly doubles in each next iteration. If , the convergence is only linear. Using the identity :\sqrt = 2^\sqrt, the computation of the square root of a positive number can be reduced to that of a number in the range . This simplifies finding a start value for the iterative method that is close to the square root, for which a
polynomial In mathematics, a polynomial is an expression consisting of indeterminates (also called variables) and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables. An exampl ...
or piecewise-linear
approximation An approximation is anything that is intentionally similar but not exactly equal to something else. Etymology and usage The word ''approximation'' is derived from Latin ''approximatus'', from ''proximus'' meaning ''very near'' and the prefix ' ...
can be used. The
time complexity In computer science, the time complexity is the computational complexity that describes the amount of computer time it takes to run an algorithm. Time complexity is commonly estimated by counting the number of elementary operations performed by t ...
for computing a square root with ''n'' digits of precision is equivalent to that of multiplying two ''n''-digit numbers. Another useful method for calculating the square root is the shifting nth root algorithm, applied for . The name of the square root
function Function or functionality may refer to: Computing * Function key, a type of key on computer keyboards * Function model, a structured representation of processes in a system * Function object or functor or functionoid, a concept of object-oriente ...
varies from
programming language A programming language is a system of notation for writing computer programs. Most programming languages are text-based formal languages, but they may also be graphical. They are a kind of computer language. The description of a programming ...
to programming language, with sqrt (often pronounced "squirt" ) being common, used in C,
C++ C++ (pronounced "C plus plus") is a high-level general-purpose programming language created by Danish computer scientist Bjarne Stroustrup as an extension of the C programming language, or "C with Classes". The language has expanded significan ...
, and derived languages like
JavaScript JavaScript (), often abbreviated as JS, is a programming language that is one of the core technologies of the World Wide Web, alongside HTML and CSS. As of 2022, 98% of websites use JavaScript on the client side for webpage behavior, of ...
, PHP, and
Python Python may refer to: Snakes * Pythonidae, a family of nonvenomous snakes found in Africa, Asia, and Australia ** ''Python'' (genus), a genus of Pythonidae found in Africa and Asia * Python (mythology), a mythical serpent Computing * Python (pro ...
.


Square roots of negative and complex numbers

The square of any positive or negative number is positive, and the square of 0 is 0. Therefore, no negative number can have a
real Real may refer to: Currencies * Brazilian real (R$) * Central American Republic real * Mexican real * Portuguese real * Spanish real * Spanish colonial real Music Albums * ''Real'' (L'Arc-en-Ciel album) (2000) * ''Real'' (Bright album) (2010) ...
square root. However, it is possible to work with a more inclusive set of numbers, called the
complex number In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the fo ...
s, that does contain solutions to the square root of a negative number. This is done by introducing a new number, denoted by ''i'' (sometimes written as ''j'', especially in the context of
electricity Electricity is the set of physical phenomena associated with the presence and motion of matter that has a property of electric charge. Electricity is related to magnetism, both being part of the phenomenon of electromagnetism, as describe ...
where "''i''" traditionally represents electric current) and called the
imaginary unit The imaginary unit or unit imaginary number () is a solution to the quadratic equation x^2+1=0. Although there is no real number with this property, can be used to extend the real numbers to what are called complex numbers, using addition an ...
, which is ''defined'' such that . Using this notation, we can think of ''i'' as the square root of −1, but we also have and so −''i'' is also a square root of −1. By convention, the principal square root of −1 is ''i'', or more generally, if ''x'' is any nonnegative number, then the principal square root of −''x'' is :\sqrt = i \sqrt x. The right side (as well as its negative) is indeed a square root of −''x'', since :(i\sqrt x)^2 = i^2(\sqrt x)^2 = (-1)x = -x. For every non-zero complex number ''z'' there exist precisely two numbers ''w'' such that : the principal square root of ''z'' (defined below), and its negative.


Principal square root of a complex number

To find a definition for the square root that allows us to consistently choose a single value, called the
principal value In mathematics, specifically complex analysis, the principal values of a multivalued function are the values along one chosen branch of that function, so that it is single-valued. The simplest case arises in taking the square root of a posit ...
, we start by observing that any complex number x + i y can be viewed as a point in the plane, (x, y), expressed using
Cartesian coordinates A Cartesian coordinate system (, ) in a plane is a coordinate system that specifies each point uniquely by a pair of numerical coordinates, which are the signed distances to the point from two fixed perpendicular oriented lines, measured in ...
. The same point may be reinterpreted using
polar coordinates In mathematics, the polar coordinate system is a two-dimensional coordinate system in which each point on a plane is determined by a distance from a reference point and an angle from a reference direction. The reference point (analogous to th ...
as the pair (r, \varphi), where r \geq 0 is the distance of the point from the origin, and \varphi is the angle that the line from the origin to the point makes with the positive real (x) axis. In complex analysis, the location of this point is conventionally written r e^. If z = r e^ \text -\pi < \varphi \leq \pi, then the of z is defined to be the following: \sqrt = \sqrt e^. The principal square root function is thus defined using the nonpositive real axis as a
branch cut In the mathematical field of complex analysis, a branch point of a multi-valued function (usually referred to as a "multifunction" in the context of complex analysis) is a point such that if the function is n-valued (has n values) at that point ...
. If z is a non-negative real number (which happens if and only if \varphi = 0) then the principal square root of z is \sqrt e^ = \sqrt; in other words, the principal square root of a non-negative real number is just the usual non-negative square root. It is important that -\pi < \varphi \leq \pi because if, for example, z = - 2 i (so \varphi = -\pi/2) then the principal square root is \sqrt = \sqrt = \sqrt e^ = \sqrt e^ = 1 - i but using \tilde := \varphi + 2 \pi = 3\pi/2 would instead produce the other square root \sqrt e^ = \sqrt e^ = -1 + i = - \sqrt. The principal square root function is
holomorphic In mathematics, a holomorphic function is a complex-valued function of one or more complex variables that is complex differentiable in a neighbourhood of each point in a domain in complex coordinate space . The existence of a complex derivati ...
everywhere except on the set of non-positive real numbers (on strictly negative reals it is not even
continuous Continuity or continuous may refer to: Mathematics * Continuity (mathematics), the opposing concept to discreteness; common examples include ** Continuous probability distribution or random variable in probability and statistics ** Continuous g ...
). The above Taylor series for \sqrt remains valid for complex numbers x with , x, < 1. The above can also be expressed in terms of
trigonometric function In mathematics, the trigonometric functions (also called circular functions, angle functions or goniometric functions) are real functions which relate an angle of a right-angled triangle to ratios of two side lengths. They are widely used in a ...
s: \sqrt = \sqrt \left(\cos \frac + i \sin \frac \right).


Algebraic formula

When the number is expressed using its real and imaginary parts, the following formula can be used for the principal square root: :\sqrt = \sqrt +i\sgn(y) \sqrt, where is the
sign A sign is an object, quality, event, or entity whose presence or occurrence indicates the probable presence or occurrence of something else. A natural sign bears a causal relation to its object—for instance, thunder is a sign of storm, or ...
of (except that, here, sgn(0) = 1). In particular, the imaginary parts of the original number and the principal value of its square root have the same sign. The real part of the principal value of the square root is always nonnegative. For example, the principal square roots of are given by: :\begin \sqrt &= \frac + i\frac = \frac(1+i),\\ \sqrt &= \frac - i\frac = \frac(1-i). \end


Notes

In the following, the complex ''z'' and ''w'' may be expressed as: * z=, z, e^ * w=, w, e^ where -\pi<\theta_z\le\pi and -\pi<\theta_w\le\pi. Because of the discontinuous nature of the square root function in the complex plane, the following laws are not true in general. * \sqrt = \sqrt \sqrt
Counterexample for the principal square root: and
This equality is valid only when -\pi<\theta_z+\theta_w\le\pi * \frac = \sqrt
Counterexample for the principal square root: and
This equality is valid only when -\pi<\theta_w-\theta_z\le\pi *\sqrt = \left( \sqrt z \right)^*
Counterexample for the principal square root: )
This equality is valid only when \theta_z\ne\pi A similar problem appears with other complex functions with branch cuts, e.g., the
complex logarithm In mathematics, a complex logarithm is a generalization of the natural logarithm to nonzero complex numbers. The term refers to one of the following, which are strongly related: * A complex logarithm of a nonzero complex number z, defined to b ...
and the relations or which are not true in general. Wrongly assuming one of these laws underlies several faulty "proofs", for instance the following one showing that : : \begin -1 &= i \cdot i \\ &= \sqrt \cdot \sqrt \\ &= \sqrt \\ &= \sqrt \\ &= 1. \end The third equality cannot be justified (see invalid proof). It can be made to hold by changing the meaning of √ so that this no longer represents the principal square root (see above) but selects a branch for the square root that contains \sqrt\cdot\sqrt. The left-hand side becomes either :\sqrt \cdot \sqrt=i \cdot i=-1 if the branch includes +''i'' or :\sqrt \cdot \sqrt=(-i) \cdot (-i)=-1 if the branch includes −''i'', while the right-hand side becomes :\sqrt=\sqrt=-1, where the last equality, \sqrt = -1, is a consequence of the choice of branch in the redefinition of √.


''N''th roots and polynomial roots

The definition of a square root of x as a number y such that y^2 = x has been generalized in the following way. A
cube root In mathematics, a cube root of a number is a number such that . All nonzero real numbers, have exactly one real cube root and a pair of complex conjugate cube roots, and all nonzero complex numbers have three distinct complex cube roots. F ...
of x is a number y such that y^3 = x; it is denoted \sqrt . If is an integer greater than two, a th root of x is a number y such that y^n = x; it is denoted \sqrt . Given any
polynomial In mathematics, a polynomial is an expression consisting of indeterminates (also called variables) and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables. An exampl ...
, a
root In vascular plants, the roots are the organs of a plant that are modified to provide anchorage for the plant and take in water and nutrients into the plant body, which allows plants to grow taller and faster. They are most often below the su ...
of is a number such that . For example, the th roots of are the roots of the polynomial (in ) y^n-x.
Abel–Ruffini theorem In mathematics, the Abel–Ruffini theorem (also known as Abel's impossibility theorem) states that there is no solution in radicals to general polynomial equations of degree five or higher with arbitrary coefficients. Here, ''general'' means th ...
states that, in general, the roots of a polynomial of degree five or higher cannot be expressed in terms of th roots.


Square roots of matrices and operators

If ''A'' is a
positive-definite matrix In mathematics, a symmetric matrix M with real entries is positive-definite if the real number z^\textsfMz is positive for every nonzero real column vector z, where z^\textsf is the transpose of More generally, a Hermitian matrix (that is, a ...
or operator, then there exists precisely one positive definite matrix or operator ''B'' with ; we then define . In general matrices may have multiple square roots or even an infinitude of them. For example, the
identity matrix In linear algebra, the identity matrix of size n is the n\times n square matrix with ones on the main diagonal and zeros elsewhere. Terminology and notation The identity matrix is often denoted by I_n, or simply by I if the size is immaterial or ...
has an infinity of square roots,Mitchell, Douglas W., "Using Pythagorean triples to generate square roots of I2", ''Mathematical Gazette'' 87, November 2003, 499–500. though only one of them is positive definite.


In integral domains, including fields

Each element of an
integral domain In mathematics, specifically abstract algebra, an integral domain is a nonzero commutative ring in which the product of any two nonzero elements is nonzero. Integral domains are generalizations of the ring of integers and provide a natural s ...
has no more than 2 square roots. The
difference of two squares In mathematics, the difference of two squares is a squared (multiplied by itself) number subtracted from another squared number. Every difference of squares may be factored according to the identity :a^2-b^2 = (a+b)(a-b) in elementary algebra. P ...
identity is proved using the commutativity of multiplication. If and are square roots of the same element, then . Because there are no
zero divisors In abstract algebra, an element of a ring is called a left zero divisor if there exists a nonzero in such that , or equivalently if the map from to that sends to is not injective. Similarly, an element of a ring is called a right zero ...
this implies or , where the latter means that two roots are
additive inverse In mathematics, the additive inverse of a number is the number that, when added to , yields zero. This number is also known as the opposite (number), sign change, and negation. For a real number, it reverses its sign: the additive inverse (op ...
s of each other. In other words if an element a square root of an element exists, then the only square roots of are and . The only square root of 0 in an integral domain is 0 itself. In a field of characteristic 2, an element either has one square root or does not have any at all, because each element is its own additive inverse, so that . If the field is
finite Finite is the opposite of infinite. It may refer to: * Finite number (disambiguation) * Finite set, a set whose cardinality (number of elements) is some natural number * Finite verb, a verb form that has a subject, usually being inflected or marke ...
of characteristic 2 then every element has a unique square root. In a field of any other characteristic, any non-zero element either has two square roots, as explained above, or does not have any. Given an odd
prime number A prime number (or a prime) is a natural number greater than 1 that is not a Product (mathematics), product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime ...
, let for some positive integer . A non-zero element of the field with elements is a
quadratic residue In number theory, an integer ''q'' is called a quadratic residue modulo ''n'' if it is congruent to a perfect square modulo ''n''; i.e., if there exists an integer ''x'' such that: :x^2\equiv q \pmod. Otherwise, ''q'' is called a quadratic no ...
if it has a square root in . Otherwise, it is a quadratic non-residue. There are quadratic residues and quadratic non-residues; zero is not counted in either class. The quadratic residues form a
group A group is a number of persons or things that are located, gathered, or classed together. Groups of people * Cultural group, a group whose members share the same cultural identity * Ethnic group, a group whose members share the same ethnic ide ...
under multiplication. The properties of quadratic residues are widely used in
number theory Number theory (or arithmetic or higher arithmetic in older usage) is a branch of pure mathematics devoted primarily to the study of the integers and integer-valued functions. German mathematician Carl Friedrich Gauss (1777–1855) said, "Ma ...
.


In rings in general

Unlike in an integral domain, a square root in an arbitrary (unital) ring need not be unique up to sign. For example, in the ring \mathbb/8\mathbb of integers modulo 8 (which is commutative, but has zero divisors), the element 1 has four distinct square roots: ±1 and ±3. Another example is provided by the ring of
quaternion In mathematics, the quaternion number system extends the complex numbers. Quaternions were first described by the Irish mathematician William Rowan Hamilton in 1843 and applied to mechanics in three-dimensional space. Hamilton defined a quater ...
s \mathbb, which has no zero divisors, but is not commutative. Here, the element −1 has infinitely many square roots, including , , and . In fact, the set of square roots of −1 is exactly :\ . A square root of 0 is either 0 or a zero divisor. Thus in rings where zero divisors do not exist, it is uniquely 0. However, rings with zero divisors may have multiple square roots of 0. For example, in \mathbb/n^2\mathbb, any multiple of is a square root of 0.


Geometric construction of the square root

The square root of a positive number is usually defined as the side length of a
square In Euclidean geometry, a square is a regular quadrilateral, which means that it has four equal sides and four equal angles (90- degree angles, π/2 radian angles, or right angles). It can also be defined as a rectangle with two equal-length a ...
with the
area Area is the quantity that expresses the extent of a region on the plane or on a curved surface. The area of a plane region or ''plane area'' refers to the area of a shape or planar lamina, while '' surface area'' refers to the area of an op ...
equal to the given number. But the square shape is not necessary for it: if one of two similar planar Euclidean objects has the area ''a'' times greater than another, then the ratio of their linear sizes is \sqrt. A square root can be constructed with a compass and straightedge. In his Elements,
Euclid Euclid (; grc-gre, Εὐκλείδης; BC) was an ancient Greek mathematician active as a geometer and logician. Considered the "father of geometry", he is chiefly known for the '' Elements'' treatise, which established the foundations of ...
(
fl. ''Floruit'' (; abbreviated fl. or occasionally flor.; from Latin for "they flourished") denotes a date or period during which a person was known to have been alive or active. In English, the unabbreviated word may also be used as a noun indicatin ...
300 BC) gave the construction of the
geometric mean In mathematics, the geometric mean is a mean or average which indicates a central tendency of a set of numbers by using the product of their values (as opposed to the arithmetic mean which uses their sum). The geometric mean is defined as the ...
of two quantities in two different places
Proposition II.14
an

Since the geometric mean of ''a'' and ''b'' is \sqrt, one can construct \sqrt simply by taking . The construction is also given by Descartes in his ''
La Géométrie ''La Géométrie'' was published in 1637 as an appendix to ''Discours de la méthode'' ('' Discourse on the Method''), written by René Descartes. In the ''Discourse'', he presents his method for obtaining clarity on any subject. ''La Géométr ...
'', see figure 2 o
page 2
However, Descartes made no claim to originality and his audience would have been quite familiar with Euclid. Euclid's second proof in Book VI depends on the theory of
similar triangles In Euclidean geometry, two objects are similar if they have the same shape, or one has the same shape as the mirror image of the other. More precisely, one can be obtained from the other by uniformly scaling (enlarging or reducing), possibly wi ...
. Let AHB be a line segment of length with and . Construct the circle with AB as diameter and let C be one of the two intersections of the perpendicular chord at H with the circle and denote the length CH as ''h''. Then, using
Thales' theorem In geometry, Thales's theorem states that if A, B, and C are distinct points on a circle where the line is a diameter, the angle ABC is a right angle. Thales's theorem is a special case of the inscribed angle theorem and is mentioned and proved ...
and, as in the proof of Pythagoras' theorem by similar triangles, triangle AHC is similar to triangle CHB (as indeed both are to triangle ACB, though we don't need that, but it is the essence of the proof of Pythagoras' theorem) so that AH:CH is as HC:HB, i.e. , from which we conclude by cross-multiplication that , and finally that h = \sqrt. When marking the midpoint O of the line segment AB and drawing the radius OC of length , then clearly OC > CH, i.e. \frac \ge \sqrt (with equality if and only if ), which is the arithmetic–geometric mean inequality for two variables and, as noted above, is the basis of the
Ancient Greek Ancient Greek includes the forms of the Greek language used in ancient Greece and the ancient world from around 1500 BC to 300 BC. It is often roughly divided into the following periods: Mycenaean Greek (), Dark Ages (), the Archaic pe ...
understanding of "Heron's method". Another method of geometric construction uses
right triangle A right triangle (American English) or right-angled triangle ( British), or more formally an orthogonal triangle, formerly called a rectangled triangle ( grc, ὀρθόσγωνία, lit=upright angle), is a triangle in which one angle is a right a ...
s and induction: \sqrt can be constructed, and once \sqrt has been constructed, the right triangle with legs 1 and \sqrt has a
hypotenuse In geometry, a hypotenuse is the longest side of a right-angled triangle, the side opposite the right angle. The length of the hypotenuse can be found using the Pythagorean theorem, which states that the square of the length of the hypotenuse e ...
of \sqrt. Constructing successive square roots in this manner yields the
Spiral of Theodorus In geometry, the spiral of Theodorus (also called ''square root spiral'', ''Einstein spiral'', ''Pythagorean spiral'', or ''Pythagoras's snail'') is a spiral composed of right triangles, placed edge-to-edge. It was named after Theodorus of Cyr ...
depicted above.


See also

*
Apotome (mathematics) In the historical study of mathematics, an apotome is a line segment formed from a longer line segment by breaking it into two parts, one of which is commensurable only in power to the whole; the other part is the apotome. In this definition, two ...
*
Cube root In mathematics, a cube root of a number is a number such that . All nonzero real numbers, have exactly one real cube root and a pair of complex conjugate cube roots, and all nonzero complex numbers have three distinct complex cube roots. F ...
*
Functional square root In mathematics, a functional square root (sometimes called a half iterate) is a square root of a function with respect to the operation of function composition. In other words, a functional square root of a function is a function satisfying ...
*
Integer square root In number theory, the integer square root (isqrt) of a non-negative integer ''n'' is the non-negative integer ''m'' which is the greatest integer less than or equal to the square root of ''n'', : \mbox( n ) = \lfloor \sqrt n \rfloor. For examp ...
*
Nested radical In algebra, a nested radical is a radical expression (one containing a square root sign, cube root sign, etc.) that contains (nests) another radical expression. Examples include :\sqrt, which arises in discussing the regular pentagon, and more c ...
*
Nth root In mathematics, a radicand, also known as an nth root, of a number ''x'' is a number ''r'' which, when raised to the power ''n'', yields ''x'': :r^n = x, where ''n'' is a positive integer, sometimes called the ''degree'' of the root. A root ...
*
Root of unity In mathematics, a root of unity, occasionally called a de Moivre number, is any complex number that yields 1 when raised to some positive integer power . Roots of unity are used in many branches of mathematics, and are especially important i ...
* Solving quadratic equations with continued fractions *
Square root principle The Penrose method (or square-root method) is a method devised in 1946 by Professor Lionel Penrose for allocating the voting weights of delegations (possibly a single representative) in decision-making bodies proportional to the square root of th ...
*


Notes


References

* * * * * .


External links


Algorithms, implementations, and more
aul Hsieh's square roots webpage


AMS Featured Column, Galileo's Arithmetic by Tony Philips
ncludes a section on how Galileo found square roots {{DEFAULTSORT:Square Root Elementary special functions Elementary mathematics Unary operations