Isotopes of gadolinium
   HOME

TheInfoList



OR:

Naturally occurring
gadolinium Gadolinium is a chemical element with the symbol Gd and atomic number 64. Gadolinium is a silvery-white metal when oxidation is removed. It is only slightly malleable and is a ductile rare-earth element. Gadolinium reacts with atmospheric oxygen ...
(64Gd) is composed of 6 stable
isotope Isotopes are two or more types of atoms that have the same atomic number (number of protons in their nuclei) and position in the periodic table (and hence belong to the same chemical element), and that differ in nucleon numbers (mass numb ...
s, 154Gd, 155Gd, 156Gd, 157Gd, 158Gd and 160Gd, and 1
radioisotope A radionuclide (radioactive nuclide, radioisotope or radioactive isotope) is a nuclide that has excess nuclear energy, making it unstable. This excess energy can be used in one of three ways: emitted from the nucleus as gamma radiation; transferr ...
, 152Gd, with 158Gd being the most abundant (24.84%
natural abundance In physics, natural abundance (NA) refers to the abundance of isotopes of a chemical element as naturally found on a planet. The relative atomic mass (a weighted average, weighted by mole-fraction abundance figures) of these isotopes is the atomi ...
). The predicted
double beta decay In nuclear physics, double beta decay is a type of radioactive decay in which two neutrons are simultaneously transformed into two protons, or vice versa, inside an atomic nucleus. As in single beta decay, this process allows the atom to move clos ...
of 160Gd has never been observed; only a lower limit on its
half-life Half-life (symbol ) is the time required for a quantity (of substance) to reduce to half of its initial value. The term is commonly used in nuclear physics to describe how quickly unstable atoms undergo radioactive decay or how long stable at ...
of more than 1.3×1021 years has been set experimentally. Thirty-three radioisotopes have been characterized, with the most stable being alpha-decaying 152Gd (naturally occurring) with a half-life of 1.08×1014 years, and 150Gd with a half-life of 1.79×106 years. All of the remaining radioactive isotopes have half-lives less than 74.7 years. The majority of these have half-lives less than 24.6 seconds. Gadolinium isotopes have 10 metastable
isomers In chemistry, isomers are molecules or polyatomic ions with identical molecular formulae – that is, same number of atoms of each element – but distinct arrangements of atoms in space. Isomerism is existence or possibility of isomers. ...
, with the most stable being 143mGd (t1/2 = 110 seconds), 145mGd (t1/2 = 85 seconds) and 141mGd (t1/2 = 24.5 seconds). The primary decay mode at atomic weights lower than the most abundant stable isotope, 158Gd, is
electron capture Electron capture (K-electron capture, also K-capture, or L-electron capture, L-capture) is a process in which the proton-rich nucleus of an electrically neutral atom absorbs an inner atomic electron, usually from the K or L electron shells. Thi ...
, and the primary mode at higher atomic weights is
beta decay In nuclear physics, beta decay (β-decay) is a type of radioactive decay in which a beta particle (fast energetic electron or positron) is emitted from an atomic nucleus, transforming the original nuclide to an isobar of that nuclide. For ...
. The primary decay products for isotopes lighter than 158Gd are
isotopes of europium Naturally occurring europium (63Eu) is composed of two isotopes, 151Eu and 153Eu, with 153Eu being the most abundant (52.2% natural abundance). While 153Eu is observationally stable, 151Eu was found in 2007 to be unstable and undergo alpha decay ...
and the primary products of heavier isotopes are isotopes of terbium. Gadolinium-153 has a half-life of 240.4 ± 10 days and emits gamma radiation with strong peaks at 41
keV Kev can refer to: Given name * Kev Adams, French comedian, actor, screenwriter and film producer born Kevin Smadja in 1991 * Kevin Kev Carmody (born 1946), Indigenous Australian singer-songwriter * Kev Coghlan (born 1988), Scottish Grand Prix moto ...
and 102 keV. It is used as a gamma ray source for
X-ray An X-ray, or, much less commonly, X-radiation, is a penetrating form of high-energy electromagnetic radiation. Most X-rays have a wavelength ranging from 10  picometers to 10  nanometers, corresponding to frequencies in the range 30&nb ...
absorptiometry and fluorescence, for bone density gauges for osteoporosis screening, and for radiometric profiling in the Lixiscope portable x-ray imaging system, also known as the Lixi Profiler. In
nuclear medicine Nuclear medicine or nucleology is a medical specialty involving the application of radioactive substances in the diagnosis and treatment of disease. Nuclear imaging, in a sense, is " radiology done inside out" because it records radiation emi ...
, it serves to calibrate the equipment needed like single-photon emission computed tomography systems (SPECT) to make
x-ray An X-ray, or, much less commonly, X-radiation, is a penetrating form of high-energy electromagnetic radiation. Most X-rays have a wavelength ranging from 10  picometers to 10  nanometers, corresponding to frequencies in the range 30&nb ...
s. It ensures that the machines work correctly to produce images of radioisotope distribution inside the patient. This isotope is produced in a nuclear reactor from europium or enriched gadolinium. It can also detect the loss of
calcium Calcium is a chemical element with the symbol Ca and atomic number 20. As an alkaline earth metal, calcium is a reactive metal that forms a dark oxide-nitride layer when exposed to air. Its physical and chemical properties are most similar t ...
in the hip and back bones, allowing the ability to diagnose osteoporosis. Gadolinium-148 would be ideal for
radioisotope thermoelectric generators A radioisotope thermoelectric generator (RTG, RITEG), sometimes referred to as a radioisotope power system (RPS), is a type of nuclear battery that uses an array of thermocouples to convert the heat released by the decay of a suitable radioact ...
due to its 74-year half-life, high density, and dominant alpha decay mode. However, gadolinium-148 cannot be economically synthesized in sufficient quantities to power a RTG.


List of isotopes

, - , 134Gd , style="text-align:right" , 64 , style="text-align:right" , 70 , 133.95537(43)# , 0.4# s , , , 0+ , , , - , 135Gd , style="text-align:right" , 64 , style="text-align:right" , 71 , 134.95257(54)# , 1.1(2) s , , , 3/2− , , , - , 136Gd , style="text-align:right" , 64 , style="text-align:right" , 72 , 135.94734(43)# , 1# s 200 ns, β+ , 136Eu , , , , - , rowspan=2, 137Gd , rowspan=2 style="text-align:right" , 64 , rowspan=2 style="text-align:right" , 73 , rowspan=2, 136.94502(43)# , rowspan=2, 2.2(2) s , β+ , 137Eu , rowspan=2, 7/2+# , rowspan=2, , rowspan=2, , - , β+, p (rare) , 136Sm , - , 138Gd , style="text-align:right" , 64 , style="text-align:right" , 74 , 137.94012(21)# , 4.7(9) s , β+ , 138Eu , 0+ , , , - , style="text-indent:1em" , 138mGd , colspan="3" style="text-indent:2em" , 2232.7(11) keV , 6(1) µs , , , (8−) , , , - , rowspan=2, 139Gd , rowspan=2 style="text-align:right" , 64 , rowspan=2 style="text-align:right" , 75 , rowspan=2, 138.93824(21)# , rowspan=2, 5.7(3) s , β+ , 139Eu , rowspan=2, 9/2−# , rowspan=2, , rowspan=2, , - , β+, p (rare) , 138Sm , - , style="text-indent:1em" , 139mGd , colspan="3" style="text-indent:2em" , 250(150)# keV , 4.8(9) s , , , 1/2+# , , , - , 140Gd , style="text-align:right" , 64 , style="text-align:right" , 76 , 139.93367(3) , 15.8(4) s , β+ , 140Eu , 0+ , , , - , rowspan=2, 141Gd , rowspan=2 style="text-align:right" , 64 , rowspan=2 style="text-align:right" , 77 , rowspan=2, 140.932126(21) , rowspan=2, 14(4) s , β+ (99.97%) , 141Eu , rowspan=2, (1/2+) , rowspan=2, , rowspan=2, , - , β+, p (.03%) , 140Sm , - , rowspan=2 style="text-indent:1em" , 141mGd , rowspan=2 colspan="3" style="text-indent:2em" , 377.8(2) keV , rowspan=2, 24.5(5) s , β+ (89%) , 141Eu , rowspan=2, (11/2−) , rowspan=2, , rowspan=2, , - , IT (11%) , 141Gd , - , 142Gd , style="text-align:right" , 64 , style="text-align:right" , 78 , 141.92812(3) , 70.2(6) s , β+ , 142Eu , 0+ , , , - , rowspan=3, 143Gd , rowspan=3 style="text-align:right" , 64 , rowspan=3 style="text-align:right" , 79 , rowspan=3, 142.92675(22) , rowspan=3, 39(2) s , β+ , 143Eu , rowspan=3, (1/2)+ , rowspan=3, , rowspan=3, , - , β+, α (rare) , 139Pm , - , β+, p (rare) , 142Sm , - , rowspan=3 style="text-indent:1em" , 143mGd , rowspan=3 colspan="3" style="text-indent:2em" , 152.6(5) keV , rowspan=3, 110.0(14) s , β+ , 143Eu , rowspan=3, (11/2−) , rowspan=3, , rowspan=3, , - , β+, α (rare) , 139Pm , - , β+, p (rare) , 142Sm , - , 144Gd , style="text-align:right" , 64 , style="text-align:right" , 80 , 143.92296(3) , 4.47(6) min , β+ , 144Eu , 0+ , , , - , 145Gd , style="text-align:right" , 64 , style="text-align:right" , 81 , 144.921709(20) , 23.0(4) min , β+ , 145Eu , 1/2+ , , , - , rowspan=2 style="text-indent:1em" , 145mGd , rowspan=2 colspan="3" style="text-indent:2em" , 749.1(2) keV , rowspan=2, 85(3) s , IT (94.3%) , 145Gd , rowspan=2, 11/2− , rowspan=2, , rowspan=2, , - , β+ (5.7%) , 145Eu , - , 146Gd , style="text-align:right" , 64 , style="text-align:right" , 82 , 145.918311(5) , 48.27(10) d , EC , 146Eu , 0+ , , , - , 147Gd , style="text-align:right" , 64 , style="text-align:right" , 83 , 146.919094(3) , 38.06(12) h , β+ , 147Eu , 7/2− , , , - , style="text-indent:1em" , 147mGd , colspan="3" style="text-indent:2em" , 8587.8(4) keV , 510(20) ns , , , (49/2+) , , , - , rowspan=2, 148Gd , rowspan=2 style="text-align:right" , 64 , rowspan=2 style="text-align:right" , 84 , rowspan=2, 147.918115(3) , rowspan=2, 74.6(30) y , α , 144Sm , rowspan=2, 0+ , rowspan=2, , rowspan=2, , - , β+β+ (rare) , ''148Sm'' , - , rowspan=2, 149Gd , rowspan=2 style="text-align:right" , 64 , rowspan=2 style="text-align:right" , 85 , rowspan=2, 148.919341(4) , rowspan=2, 9.28(10) d , β+ , 149Eu , rowspan=2, 7/2− , rowspan=2, , rowspan=2, , - , α (4.34×10−4%) , 145Sm , - , rowspan=2, 150Gd , rowspan=2 style="text-align:right" , 64 , rowspan=2 style="text-align:right" , 86 , rowspan=2, 149.918659(7) , rowspan=2, 1.79(8)×106 y , α , 146Sm , rowspan=2, 0+ , rowspan=2, , rowspan=2, , - , β+β+ (rare) , 150Sm , - , rowspan=2, 151Gd , rowspan=2 style="text-align:right" , 64 , rowspan=2 style="text-align:right" , 87 , rowspan=2, 150.920348(4) , rowspan=2, 124(1) d , EC , ''151Eu'' , rowspan=2, 7/2− , rowspan=2, , rowspan=2, , - , α (10−6%) , ''147Sm'' , - , 152Gd primordial radionuclide , style="text-align:right" , 64 , style="text-align:right" , 88 , 151.9197910(27) , 1.08(8)×1014 y , αTheorized to also undergo β+β+ decay to 152Sm , ''148Sm'' , 0+ , 0.0020(1) , , - , 153Gd , style="text-align:right" , 64 , style="text-align:right" , 89 , 152.9217495(27) , 240.4(10) d , EC , 153Eu , 3/2− , , , - , style="text-indent:1em" , 153m1Gd , colspan="3" style="text-indent:2em" , 95.1737(12) keV , 3.5(4) µs , , , (9/2+) , , , - , style="text-indent:1em" , 153m2Gd , colspan="3" style="text-indent:2em" , 171.189(5) keV , 76.0(14) µs , , , (11/2−) , , , - , 154Gd , style="text-align:right" , 64 , style="text-align:right" , 90 , 153.9208656(27) , colspan="3" style="text-align:center;",
Observationally Stable Stable nuclides are nuclides that are not radioactive and so (unlike radionuclides) do not spontaneously undergo radioactive decay. When such nuclides are referred to in relation to specific elements, they are usually termed stable isotopes. Th ...
Believed to undergo α decay to 150Sm , 0+ , 0.0218(3) , , - , 155Gd Fission product , style="text-align:right" , 64 , style="text-align:right" , 91 , 154.9226220(27) , colspan="3" style="text-align:center;", Observationally StableBelieved to undergo α decay to 151Sm , 3/2− , 0.1480(12) , , - , style="text-indent:1em" , 155mGd , colspan="3" style="text-indent:2em" , 121.05(19) keV , 31.97(27) ms , IT , 155Gd , 11/2− , , , - , 156Gd , style="text-align:right" , 64 , style="text-align:right" , 92 , 155.9221227(27) , colspan="3" style="text-align:center;", StableTheoretically capable of spontaneous fission , 0+ , 0.2047(9) , , - , style="text-indent:1em" , 156mGd , colspan="3" style="text-indent:2em" , 2137.60(5) keV , 1.3(1) µs , , , 7- , , , - , 157Gd , style="text-align:right" , 64 , style="text-align:right" , 93 , 156.9239601(27) , colspan="3" style="text-align:center;", Stable , 3/2− , 0.1565(2) , , - , 158Gd , style="text-align:right" , 64 , style="text-align:right" , 94 , 157.9241039(27) , colspan="3" style="text-align:center;", Stable , 0+ , 0.2484(7) , , - , 159Gd , style="text-align:right" , 64 , style="text-align:right" , 95 , 158.9263887(27) , 18.479(4) h , β , 159Tb , 3/2− , , , - , 160Gd , style="text-align:right" , 64 , style="text-align:right" , 96 , 159.9270541(27) , colspan="3" style="text-align:center;", Observationally StableBelieved to undergo ββ decay to 160Dy with a
half-life Half-life (symbol ) is the time required for a quantity (of substance) to reduce to half of its initial value. The term is commonly used in nuclear physics to describe how quickly unstable atoms undergo radioactive decay or how long stable at ...
over 1.3×1021 years
, 0+ , 0.2186(19) , , - , 161Gd , style="text-align:right" , 64 , style="text-align:right" , 97 , 160.9296692(29) , 3.646(3) min , β , 161Tb , 5/2− , , , - , 162Gd , style="text-align:right" , 64 , style="text-align:right" , 98 , 161.930985(5) , 8.4(2) min , β , 162Tb , 0+ , , , - , 163Gd , style="text-align:right" , 64 , style="text-align:right" , 99 , 162.93399(32)# , 68(3) s , β , 163Tb , 7/2+# , , , - , 164Gd , style="text-align:right" , 64 , style="text-align:right" , 100 , 163.93586(43)# , 45(3) s , β , 164Tb , 0+ , , , - , 165Gd , style="text-align:right" , 64 , style="text-align:right" , 101 , 164.93938(54)# , 10.3(16) s , β , 165Tb , 1/2−# , , , - , 166Gd , style="text-align:right" , 64 , style="text-align:right" , 102 , 165.94160(64)# , 4.8(10) s , β , 166Tb , 0+ , , , - , 167Gd , style="text-align:right" , 64 , style="text-align:right" , 103 , 166.94557(64)# , 4.2(3) s , β , 167Tb , 5/2−# , , , - , 168Gd , style="text-align:right" , 64 , style="text-align:right" , 104 , 167.94836(75)# , 3.03(16) s , β , 168Tb , 0+ , , , - , 169Gd , style="text-align:right" , 64 , style="text-align:right" , 105 , 168.95287(86)# , 750(210) ms , β , 169Tb , 7/2−# , , , - , 170Gd , style="text-align:right" , 64 , style="text-align:right" , 106 , , , β , 170Tb , 0+ , , , - , 171Gd , style="text-align:right" , 64 , style="text-align:right" , 107 , , , β , 171Tb , , , , - , 172Gd , style="text-align:right" , 64 , style="text-align:right" , 108 , , , β , 172Tb , 0+ , ,


References

* Isotope masses from: ** * Isotopic compositions and standard atomic masses from: ** ** * Half-life, spin, and isomer data selected from the following sources. ** ** ** {{Navbox element isotopes Gadolinium
Gadolinium Gadolinium is a chemical element with the symbol Gd and atomic number 64. Gadolinium is a silvery-white metal when oxidation is removed. It is only slightly malleable and is a ductile rare-earth element. Gadolinium reacts with atmospheric oxygen ...