Gravitational moment
   HOME

TheInfoList



OR:

In
classical mechanics Classical mechanics is a physical theory describing the motion of macroscopic objects, from projectiles to parts of machinery, and astronomical objects, such as spacecraft, planets, stars, and galaxies. For objects governed by classi ...
, the gravitational potential at a point in space is equal to the
work Work may refer to: * Work (human activity), intentional activity people perform to support themselves, others, or the community ** Manual labour, physical work done by humans ** House work, housework, or homemaking ** Working animal, an animal t ...
(
energy In physics, energy (from Ancient Greek: ἐνέργεια, ''enérgeia'', “activity”) is the quantitative property that is transferred to a body or to a physical system, recognizable in the performance of work and in the form of hea ...
transferred) per unit mass that would be needed to move an object to that point from a fixed reference point. It is
analogous Analogy (from Greek ''analogia'', "proportion", from ''ana-'' "upon, according to" lso "against", "anew"+ ''logos'' "ratio" lso "word, speech, reckoning" is a cognitive process of transferring information or meaning from a particular subject ...
to the
electric potential The electric potential (also called the ''electric field potential'', potential drop, the electrostatic potential) is defined as the amount of work energy needed to move a unit of electric charge from a reference point to the specific point in ...
with
mass Mass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a physical body, until the discovery of the atom and particle physics. It was found that different atoms and different eleme ...
playing the role of
charge Charge or charged may refer to: Arts, entertainment, and media Films * '' Charge, Zero Emissions/Maximum Speed'', a 2011 documentary Music * ''Charge'' (David Ford album) * ''Charge'' (Machel Montano album) * ''Charge!!'', an album by The Aqu ...
. The reference point, where the potential is zero, is by convention
infinitely Infinity is that which is boundless, endless, or larger than any natural number. It is often denoted by the infinity symbol . Since the time of the ancient Greeks, the philosophical nature of infinity was the subject of many discussions amo ...
far away from any mass, resulting in a negative potential at any
finite Finite is the opposite of infinite. It may refer to: * Finite number (disambiguation) * Finite set, a set whose cardinality (number of elements) is some natural number * Finite verb, a verb form that has a subject, usually being inflected or marke ...
distance. In mathematics, the gravitational potential is also known as the
Newtonian potential In mathematics, the Newtonian potential or Newton potential is an operator in vector calculus that acts as the inverse to the negative Laplacian, on functions that are smooth and decay rapidly enough at infinity. As such, it is a fundamental object ...
and is fundamental in the study of
potential theory In mathematics and mathematical physics, potential theory is the study of harmonic functions. The term "potential theory" was coined in 19th-century physics when it was realized that two fundamental forces of nature known at the time, namely gra ...
. It may also be used for solving the electrostatic and magnetostatic fields generated by uniformly charged or polarized ellipsoidal bodies.


Potential energy

The gravitational potential (''V'') at a location is the gravitational potential energy (''U'') at that location per unit mass: V = \frac, where ''m'' is the mass of the object. Potential energy is equal (in magnitude, but negative) to the work done by the gravitational field moving a body to its given position in space from infinity. If the body has a mass of 1 kilogram, then the potential energy to be assigned to that body is equal to the gravitational potential. So the potential can be interpreted as the negative of the work done by the gravitational field moving a unit mass in from infinity. In some situations, the equations can be simplified by assuming a field that is nearly independent of position. For instance, in a region close to the surface of the Earth, the
gravitational acceleration In physics, gravitational acceleration is the acceleration of an object in free fall within a vacuum (and thus without experiencing drag). This is the steady gain in speed caused exclusively by the force of gravitational attraction. All bodi ...
, ''g'', can be considered constant. In that case, the difference in potential energy from one height to another is, to a good approximation, linearly related to the difference in height: \Delta U \approx mg \Delta h.


Mathematical form

The gravitational
potential Potential generally refers to a currently unrealized ability. The term is used in a wide variety of fields, from physics to the social sciences to indicate things that are in a state where they are able to change in ways ranging from the simple r ...
''V'' at a distance ''x'' from a
point mass A point particle (ideal particle or point-like particle, often spelled pointlike particle) is an idealization of particles heavily used in physics. Its defining feature is that it lacks spatial extension; being dimensionless, it does not take up ...
of mass ''M'' can be defined as the work ''W'' that needs to be done by an external agent to bring a unit mass in from infinity to that point: V(\mathbf) = \frac = \frac \int_^ \mathbf \cdot d\mathbf = \frac \int_^ \frac dx = -\frac, where ''G'' is the gravitational constant, and F is the gravitational force. The product ''GM'' is the standard gravitational parameter and is often known to higher precision than ''G'' or ''M'' separately. The potential has units of energy per mass, e.g., J/kg in the MKS system. By convention, it is always negative where it is defined, and as ''x'' tends to infinity, it approaches zero. The gravitational field, and thus the acceleration of a small body in the space around the massive object, is the negative
gradient In vector calculus, the gradient of a scalar-valued differentiable function of several variables is the vector field (or vector-valued function) \nabla f whose value at a point p is the "direction and rate of fastest increase". If the gr ...
of the gravitational potential. Thus the negative of a negative gradient yields positive acceleration toward a massive object. Because the potential has no angular components, its gradient is \mathbf = -\frac \mathbf = -\frac \hat, where x is a vector of length ''x'' pointing from the point mass toward the small body and \hat is a unit vector pointing from the point mass toward the small body. The magnitude of the acceleration therefore follows an inverse square law: , \mathbf, = \frac. The potential associated with a mass distribution is the superposition of the potentials of point masses. If the mass distribution is a finite collection of point masses, and if the point masses are located at the points x1, ..., x''n'' and have masses ''m''1, ..., ''m''''n'', then the potential of the distribution at the point x is V(\mathbf) = \sum_^n -\frac. If the mass distribution is given as a mass measure ''dm'' on three-dimensional
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean ...
R3, then the potential is the
convolution In mathematics (in particular, functional analysis), convolution is a mathematical operation on two functions ( and ) that produces a third function (f*g) that expresses how the shape of one is modified by the other. The term ''convolution'' ...
of with ''dm''. In good cases this equals the integral V(\mathbf) = -\int_ \frac\,dm(\mathbf), where is the
distance Distance is a numerical or occasionally qualitative measurement of how far apart objects or points are. In physics or everyday usage, distance may refer to a physical length or an estimation based on other criteria (e.g. "two counties over"). ...
between the points x and r. If there is a function ''ρ''(r) representing the density of the distribution at r, so that , where ''dv''(r) is the Euclidean
volume element In mathematics, a volume element provides a means for integrating a function with respect to volume in various coordinate systems such as spherical coordinates and cylindrical coordinates. Thus a volume element is an expression of the form :dV ...
, then the gravitational potential is the
volume integral In mathematics (particularly multivariable calculus), a volume integral (∭) refers to an integral over a 3-dimensional domain; that is, it is a special case of multiple integrals. Volume integrals are especially important in physics for many ...
V(\mathbf) = -\int_ \frac\,\rho(\mathbf)dv(\mathbf). If ''V'' is a potential function coming from a continuous mass distribution ''ρ''(r), then ''ρ'' can be recovered using the Laplace operator, : \rho(\mathbf) = \frac\Delta V(\mathbf). This holds pointwise whenever ''ρ'' is continuous and is zero outside of a bounded set. In general, the mass measure ''dm'' can be recovered in the same way if the Laplace operator is taken in the sense of distributions. As a consequence, the gravitational potential satisfies
Poisson's equation Poisson's equation is an elliptic partial differential equation of broad utility in theoretical physics. For example, the solution to Poisson's equation is the potential field caused by a given electric charge or mass density distribution; with t ...
. See also Green's function for the three-variable Laplace equation and
Newtonian potential In mathematics, the Newtonian potential or Newton potential is an operator in vector calculus that acts as the inverse to the negative Laplacian, on functions that are smooth and decay rapidly enough at infinity. As such, it is a fundamental object ...
. The integral may be expressed in terms of known transcendental functions for all ellipsoidal shapes, including the symmetrical and degenerate ones. These include the sphere, where the three semi axes are equal; the oblate (see reference ellipsoid) and prolate spheroids, where two semi axes are equal; the degenerate ones where one semi axes is infinite (the elliptical and circular cylinder) and the unbounded sheet where two semi axes are infinite. All these shapes are widely used in the applications of the gravitational potential integral (apart from the constant ''G'', with 𝜌 being a constant charge density) to electromagnetism.


Spherical symmetry

A spherically symmetric mass distribution behaves to an observer completely outside the distribution as though all of the mass was concentrated at the center, and thus effectively as a
point mass A point particle (ideal particle or point-like particle, often spelled pointlike particle) is an idealization of particles heavily used in physics. Its defining feature is that it lacks spatial extension; being dimensionless, it does not take up ...
, by the shell theorem. On the surface of the earth, the acceleration is given by so-called standard gravity ''g'', approximately 9.8 m/s2, although this value varies slightly with latitude and altitude. The magnitude of the acceleration is a little larger at the poles than at the equator because Earth is an oblate spheroid. Within a spherically symmetric mass distribution, it is possible to solve Poisson's equation in spherical coordinates. Within a uniform spherical body of radius ''R'', density ρ, and mass ''m'', the gravitational force ''g'' inside the sphere varies linearly with distance ''r'' from the center, giving the gravitational potential inside the sphere, which isExtract of page 19
/ref> V(r) = \frac \pi G \rho \left ^2 - 3 R^2\right= \frac \left ^2 -3 R^2\right \qquad r \leq R, which differentiably connects to the potential function for the outside of the sphere (see the figure at the top).


General relativity

In
general relativity General relativity, also known as the general theory of relativity and Einstein's theory of gravity, is the geometric theory of gravitation published by Albert Einstein in 1915 and is the current description of gravitation in modern physics ...
, the gravitational potential is replaced by the metric tensor. When the gravitational field is weak and the sources are moving very slowly compared to light-speed, general relativity reduces to Newtonian gravity, and the metric tensor can be expanded in terms of the gravitational potential.


Multipole expansion

The potential at a point is given by V(\mathbf) = - \int_ \frac\ dm(\mathbf). The potential can be expanded in a series of
Legendre polynomials In physical science and mathematics, Legendre polynomials (named after Adrien-Marie Legendre, who discovered them in 1782) are a system of complete and orthogonal polynomials, with a vast number of mathematical properties, and numerous applica ...
. Represent the points x and r as position vectors relative to the center of mass. The denominator in the integral is expressed as the square root of the square to give \begin V(\mathbf) &= - \int_ \frac\,dm(\mathbf)\\ &=- \frac\int_ \frac \sqrt\,dm(\mathbf) \end where, in the last integral, and is the angle between x and r. (See "mathematical form".) The integrand can be expanded as a
Taylor series In mathematics, the Taylor series or Taylor expansion of a function is an infinite sum of terms that are expressed in terms of the function's derivatives at a single point. For most common functions, the function and the sum of its Taylor ser ...
in , by explicit calculation of the coefficients. A less laborious way of achieving the same result is by using the generalized
binomial theorem In elementary algebra, the binomial theorem (or binomial expansion) describes the algebraic expansion of powers of a binomial. According to the theorem, it is possible to expand the polynomial into a sum involving terms of the form , where the ...
. The resulting series is the generating function for the Legendre polynomials: \left(1- 2 X Z + Z^2 \right) ^ \ = \sum_^\infty Z^n P_n(X) valid for and . The coefficients ''P''''n'' are the Legendre polynomials of degree ''n''. Therefore, the Taylor coefficients of the integrand are given by the Legendre polynomials in . So the potential can be expanded in a series that is convergent for positions x such that for all mass elements of the system (i.e., outside a sphere, centered at the center of mass, that encloses the system): \begin V(\mathbf) &= - \frac \int \sum_^\infty \left(\frac \right)^n P_n(\cos \theta) \, dm(\mathbf)\\ &= - \frac \int \left(1 + \left(\frac\right) \cos \theta + \left(\frac\right)^2\frac + \cdots\right)\,dm(\mathbf) \end The integral \int r \cos(\theta) \, dm is the component of the center of mass in the direction; this vanishes because the vector x emanates from the center of mass. So, bringing the integral under the sign of the summation gives V(\mathbf) = - \frac - \frac \int \left(\frac\right)^2 \frac dm(\mathbf) + \cdots This shows that elongation of the body causes a lower potential in the direction of elongation, and a higher potential in perpendicular directions, compared to the potential due to a spherical mass, if we compare cases with the same distance to the center of mass. (If we compare cases with the same distance to the ''surface'', the opposite is true.)


Numerical values

The absolute value of gravitational potential at a number of locations with regards to the gravitation from the
Earth Earth is the third planet from the Sun and the only astronomical object known to harbor life. While large volumes of water can be found throughout the Solar System, only Earth sustains liquid surface water. About 71% of Earth's surfa ...
, the
Sun The Sun is the star at the center of the Solar System. It is a nearly perfect ball of hot plasma, heated to incandescence by nuclear fusion reactions in its core. The Sun radiates this energy mainly as light, ultraviolet, and infrared radi ...
, and the
Milky Way The Milky Way is the galaxy that includes our Solar System, with the name describing the galaxy's appearance from Earth: a hazy band of light seen in the night sky formed from stars that cannot be individually distinguished by the naked eye. ...
is given in the following table; i.e. an object at Earth's surface would need 60 MJ/kg to "leave" Earth's gravity field, another 900 MJ/kg to also leave the Sun's gravity field and more than 130 GJ/kg to leave the gravity field of the Milky Way. The potential is half the square of the
escape velocity In celestial mechanics, escape velocity or escape speed is the minimum speed needed for a free, non- propelled object to escape from the gravitational influence of a primary body, thus reaching an infinite distance from it. It is typically ...
. Compare the gravity at these locations.


See also

* Applications of Legendre polynomials in physics * Standard gravitational parameter (''GM'') *
Geoid The geoid () is the shape that the ocean surface would take under the influence of the gravity of Earth, including gravitational attraction and Earth's rotation, if other influences such as winds and tides were absent. This surface is extended ...
*
Geopotential Geopotential is the potential of the Earth's gravity field. For convenience it is often defined as the ''negative'' of the potential energy per unit mass, so that the gravity vector is obtained as the gradient of this potential, without the negat ...
* Geopotential model


Notes


References

*. * * * * * * . * * * {{Portal bar, Physics, Mathematics, Astronomy, Stars, Spaceflight, Outer space, Solar System, Science Energy (physics) Gravity Potentials