The Info List - Formaldehyde

--- Advertisement ---

Butyraldehyde Decanal Heptanal Hexanal Nonanal Octadecanal Octanal Pentanal Propionaldehyde

Related compounds

methanol formic acid

Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Y verify (what is YN ?)

Infobox references

(systematic name methanal), is a naturally occurring organic compound with the formula CH2O (H-CHO). It is the simplest of the aldehydes (R-CHO). The common name of this substance comes from its similarity and relation to formic acid. Formaldehyde
is an important precursor to many other materials and chemical compounds. In 1996, the installed capacity for the production of formaldehyde was estimated to be 8.7 million tons per year.[11] It is mainly used in the production of industrial resins, e.g., for particle board and coatings. In view of its widespread use, toxicity, and volatility, formaldehyde poses a significant danger to human health.[12] In 2011, the US National Toxicology Program
National Toxicology Program
described formaldehyde as "known to be a human carcinogen".[13][14][15]


1 Forms of formaldehyde 2 Occurrence

2.1 Interstellar formaldehyde

3 Synthesis and industrial production

3.1 History 3.2 Industry

4 Organic chemistry

4.1 Self-condensation and hydration 4.2 Oxidation 4.3 Hydroxymethylation and chloromethylation 4.4 Base reactions

5 Uses

5.1 Industrial applications 5.2 Examples of organic synthetic applications 5.3 Disinfectant and biocide 5.4 Tissue fixative and embalming agent 5.5 Drug testing 5.6 Photography

6 Safety

6.1 International bans 6.2 Formaldehyde
issues in trailers

6.2.1 Hurricanes Katrina and Rita 6.2.2 Iowa floods of 2008

7 Contaminant in food 8 See also 9 References 10 External links

Forms of formaldehyde[edit] Formaldehyde
is more complicated than many simple carbon compounds in that it adopts several different forms. As a gas, formaldehyde is colorless and has a characteristic pungent, irritating odor. Upon condensation, the gas converts to various other forms of formaldehyde (with different chemical formulas) that are of more practical value. One important derivative is the cyclic trimer metaformaldehyde or 1,3,5-trioxane
with the formula (CH2O)3. There is also a linear polymer called paraformaldehyde. These compounds have similar chemical properties and are often used interchangeably.

is a common form of formaldehyde for industrial applications.

When dissolved in water, formaldehyde also forms a hydrate, methanediol, with the formula H2C(OH)2. This compound also exists in equilibrium with various oligomers (short polymers), depending on the concentration and temperature. A saturated water solution, of about 40% formaldehyde by volume or 37% by mass, is called "100% formalin". A small amount of stabilizer, such as methanol, is usually added to suppress oxidation and polymerization. A typical commercial grade formalin may contain 10–12% methanol in addition to various metallic impurities. The name was long ago genericized from an old trade name "Formalin".[16] Occurrence[edit] Processes in the upper atmosphere contribute up to 90% of the total formaldehyde in the environment. Formaldehyde
is an intermediate in the oxidation (or combustion) of methane, as well as of other carbon compounds, e.g. in forest fires, automobile exhaust, and tobacco smoke. When produced in the atmosphere by the action of sunlight and oxygen on atmospheric methane and other hydrocarbons, it becomes part of smog. Formaldehyde
has also been detected in outer space (see below). Formaldehyde
and its adducts are ubiquitous in living organisms. It is formed in the metabolism of endogenous amino acids[which?] and is found in the bloodstream of humans and other primates at concentrations of approximately 0.1 millimolar.[17] Experiments in which animals are exposed to an atmosphere containing isotopically labeled formaldehyde have demonstrated that even in deliberately exposed animals, the majority of formaldehyde- DNA
adducts found in non-respiratory tissues are derived from endogenously produced formaldehyde.[18] Formaldehyde
does not accumulate in the environment, because it is broken down within a few hours by sunlight or by bacteria present in soil or water. Humans metabolize formaldehyde quickly, so it does not accumulate, converting it to formic acid in the body.[19] Interstellar formaldehyde[edit] Main article: Interstellar formaldehyde Formaldehyde
was the first polyatomic organic molecule detected in the interstellar medium.[20] Since its initial detection in 1969, it has been observed in many regions of the galaxy. Because of the widespread interest in interstellar formaldehyde, it has recently been extensively studied, yielding new extragalactic sources.[21] A proposed mechanism for the formation is the hydrogenation of CO ice, shown below.[22]

H + CO → HCO HCO + H → CH2O (rate constant=9.2×10−3 s−1)[clarification needed]

appears to be a useful probe for astrochemists due to its low reactivity in the gas phase and to the fact that the 110←111 and 211←212 K-doublet transitions are rather clear. On 11 August 2014, astronomers released studies, using the Atacama Large Millimeter/Submillimeter Array (ALMA) for the first time, that detailed the distribution of HCN, HNC, H2CO, and dust inside the comae of comets C/2012 F6 (Lemmon)
C/2012 F6 (Lemmon)
and C/2012 S1 (ISON).[23][24] Synthesis and industrial production[edit] History[edit] Formaldehyde
was first reported in 1859 by the Russian chemist Aleksandr Butlerov
Aleksandr Butlerov
(1828–86)[25] and was conclusively identified in 1869 by August Wilhelm von Hofmann.[26][27] Industry[edit] Formaldehyde
is produced industrially by the catalytic oxidation of methanol. The most common catalysts are silver metal or a mixture of an iron and molybdenum or vanadium oxides. In the commonly used formox process, methanol and oxygen react at ca. 250–400 °C in presence of iron oxide in combination with molybdenum and/or vanadium to produce formaldehyde according to the chemical equation:[11]

2 CH3OH + O2 → 2 CH2O + 2 H2O

The silver-based catalyst usually operates at a higher temperature, about 650 °C. Two chemical reactions on it simultaneously produce formaldehyde: that shown above and the dehydrogenation reaction:

CH3OH → CH2O + H2

In principle, formaldehyde could be generated by oxidation of methane, but this route is not industrially viable because the methanol is more easily oxidized than methane.[11] Organic chemistry[edit] Formaldehyde
is a building block in the synthesis of many other compounds of specialised and industrial significance. It exhibits most of the chemical properties of other aldehydes but is more reactive. Self-condensation and hydration[edit] Formaldehyde, unlike most aldehydes, oligomerizes spontaneously. The trimer is trioxane and the polymer is called paraformaldehyde. Many cyclic oligomers have been isolated. Similarly, formaldehyde hydrates to give the geminal diol, which condenses further to form oligomers HO(CH2O)nH. Monomeric CH2O is rarely encountered. Oxidation[edit] It is more readily oxidized by atmospheric oxygen into formic acid. For this reason, commercial formaldehyde typically is contaminated with formic acid. Hydroxymethylation and chloromethylation[edit] Formaldehyde
is a good electrophile. With good nucleophiles such as thiols, amines, and even amides, no acid catalyst is required. The resulting hydroxymethyl derivatives typically react further. Thus amines give hexahydro-1,3,5-triazines. Similarly, when combined with hydrogen sulfide, it forms trithiane.[28]

3CH2O + 3H2S → (CH2S)3 + 3H2O

In the presence of acids, it participates in electrophilic aromatic substitution reactions with aromatic compounds resulting in hydroxymethylated derivatives:

ArH + CH2O → ArCH2OH

When conducted in the presence of hydrogen chloride, the product is the chloromethyl compound, as described in the Blanc chloromethylation. If the arene is electron-rich, as in phenols, elaborate condensations ensue. With 4-substituted phenols one obtains calixarenes.[29] Phenol results in polymers. Base reactions[edit] Cannizzaro reaction
Cannizzaro reaction
in the presence of basic catalysts to produce formic acid and methanol. Uses[edit] Industrial applications[edit] Formaldehyde
is a common precursor to more complex compounds and materials. In approximate order of decreasing consumption, products generated from formaldehyde include urea formaldehyde resin, melamine resin, phenol formaldehyde resin, polyoxymethylene plastics, 1,4-butanediol, and methylene diphenyl diisocyanate.[11] The textile industry uses formaldehyde-based resins as finishers to make fabrics crease-resistant.[30] Formaldehyde-based materials are key to the manufacture of automobiles, and used to make components for the transmission, electrical system, engine block, door panels, axles and brake shoes. The value of sales of formaldehyde and derivative products was over $145 billion in 2003, about 1.2% of the gross domestic product (GDP) of the United States and Canada. Including indirect employment, over 4 million people work in the formaldehyde industry across approximately 11,900 plants in the U.S. and Canada.[31]

Two steps in formation of urea-formaldehyde resin, which is widely used in the production of particle board.

When treated with phenol, urea, or melamine, formaldehyde produces, respectively, hard thermoset phenol formaldehyde resin, urea formaldehyde resin, and melamine resin. These polymers are common permanent adhesives used in plywood and carpeting. It is used as the wet-strength resin added to sanitary paper products such as (listed in increasing concentrations injected into the paper machine headstock chest) facial tissue, table napkins, and roll towels. They are also foamed to make insulation, or cast into moulded products. Production of formaldehyde resins accounts for more than half of formaldehyde consumption. Formaldehyde
is also a precursor to polyfunctional alcohols such as pentaerythritol, which is used to make paints and explosives. Other formaldehyde derivatives include methylene diphenyl diisocyanate, an important component in polyurethane paints and foams, and hexamine, which is used in phenol-formaldehyde resins as well as the explosive RDX. Examples of organic synthetic applications[edit] Condensation with acetaldehyde affords pentaerythritol, a chemical necessary in synthesizing PETN, a high explosive.[32] Condensation with phenols gives phenol-formaldehyde resins. Disinfectant and biocide[edit] An aqueous solution of formaldehyde can be useful as a disinfectant as it kills most bacteria and fungi (including their spores). Formaldehyde
solutions are applied topically in medicine to dry the skin, such as in the treatment of warts. Many aquarists use formaldehyde as a treatment for the parasites Ichthyophthirius multifiliis and Cryptocaryon irritans.[33] Formaldehyde
is used to inactivate bacterial products for toxoid vaccines (vaccines that use an inactive bacterial toxin to produce immunity). It is also used to kill unwanted viruses and bacteria that might contaminate the vaccine during production.[34] Urinary tract infections are also often treated using a derivative of formaldehyde (methenamine), a method often chosen because it prevents overuse of antibiotics and the resultant development of bacterial resistance to them. In an acid environment, methenamine is converted in the kidneys to formaldehyde, which then has an antibacterial effect in the urinary tract. Some topical creams, cosmetics, and personal hygiene products contain derivatives of formaldehyde as the active ingredients that prevent the growth of potentially harmful bacteria. Formaldehyde
is also approved for use in the manufacture of animal feeds in the US. It is an antimicrobial agent used to maintain complete animal feeds or feed ingredients Salmonella
negative for up to 21 days.[35] Tissue fixative and embalming agent[edit]

Injecting a giant squid specimen with formalin for preservation.

preserves or fixes tissue or cells by a mixture of reversible (short exposure time and low temperatures) and irreversible (long exposure time and higher temperatures) cross-linking of primary amino groups in proteins with other nearby nitrogen atoms in protein or DNA
through a -CH2- linkage. This is exploited in ChIP-on-chip
or ChIP-sequencing
genomics experiments, where DNA-binding proteins are cross-linked to their cognate binding sites on the chromosome and analyzed to determine what genes are regulated by the proteins. Formaldehyde
is also used as a denaturing agent in RNA
gel electrophoresis, preventing RNA
from forming secondary structures. A solution of 4% formaldehyde fixes pathology tissue specimens at about one mm per hour at room temperature. Formaldehyde
solutions are used as a fixative for microscopy and histology because of formaldehyde's ability to perform the Mannich reaction, although the percentage formaldehyde used may vary based on the method of analysis. Additionally, the methanol used to stabilize formaldehyde may interfere with the ability to properly fix tissue or cells, and therefore commercial formaldehyde preparations are available that are packaged in glass ampules under an inert gas to prevent the use of contaminating methanol for stabilization. Formaldehyde-based solutions are also used in embalming to disinfect and temporarily preserve human and animal remains. It is the ability of formaldehyde to fix the tissue that produces the tell-tale firmness of flesh in an embalmed body. In post mortem examinations a procedure known as the "sink test" involves placing the lungs of an animal in an aqueous solution of formaldehyde; if the lungs float it suggests the animal was probably breathing or able to breathe at the time of death. Although formaldehyde solutions are commonly used as a biological preserving medium, usually for smaller specimens, it delays, but does not prevent, decay. This method of fixation does not preserve nucleic acids, thus preventing, for example, genetic analysis of the first discovered Dendrogramma
specimens. Several European countries restrict the use of formaldehyde, including the import of formaldehyde-treated products and embalming. Starting September 2007, the European Union banned the use of formaldehyde due to its carcinogenic properties as a biocide (including embalming) under the Biocidal Products Directive (98/8/EC).[36][37] Countries with a strong tradition of embalming corpses, such as Ireland and other colder-weather countries, have raised concerns. Despite reports to the contrary,[38] no decision on the inclusion of formaldehyde on Annex I of the Biocidal Products Directive for product-type 22 (embalming and taxidermist fluids) had been made as of September 2009[update].[39] Drug testing[edit] Formaldehyde, along with 18 M (concentrated) sulfuric acid makes Marquis reagent which can be used to identify alkaloids and other compounds. Photography[edit] In photography, formaldehyde is used in low concentrations for process C-41 (color negative film) stabilizer in the final wash step,[40] as well as in the process E-6 pre-bleach step, to make it unnecessary in the final wash. Safety[edit] The safety of formaldehyde is very complicated. It occurs naturally and is "an essential intermediate in cellular metabolism in mammals and humans."[11] It is not acutely toxic as ingestion of many milliliters is tolerated.[41] The main concerns are associated with chronic (long term) exposure by inhalation. This may happen through 3 main sources: thermal or chemical decomposition of formaldehyde-based resins, emission from aqueous formaldehyde solutions (i.e. embalming fluids), and the production of formaldehyde resulting from the combustion of a variety of organic compounds (for example, exhaust gases). As formaldehyde resins are used in many construction materials it is one of the more common indoor air pollutants.[42] At concentrations above 0.1 ppm in air formaldehyde can irritate the eyes and mucous membranes, resulting in watery eyes.[43] Formaldehyde inhaled at this concentration may cause headaches, a burning sensation in the throat, and difficulty breathing, and can trigger or aggravate asthma symptoms.[44][45] A 1988 Canadian study of houses with urea-formaldehyde foam insulation found that formaldehyde levels as low as 0.046 ppm were positively correlated with eye and nasal irritation.[46] A recent review of studies has shown a strong association between exposure to formaldehyde and the development of childhood asthma.[47] The primary exposure concern is for the workers in the industries producing or using formaldehyde. The formaldehyde theory of carcinogenesis was proposed in 1978.[48] In 1987 the U.S. EPA classified it as a probable human carcinogen, and after more studies the WHO
International Agency for Research on Cancer (IARC) in 1995 also classified it as a probable human carcinogen. Further information and evaluation of all known data led the IARC to reclassify formaldehyde as a known human carcinogen[49] associated with nasal sinus cancer and nasopharyngeal cancer.[50] Recent studies have also shown a positive correlation between exposure to formaldehyde and the development of leukemia, particularly myeloid leukemia.[51][52] Nasopharyngeal and sinonasal cancers are relatively rare, with a combined annual incidence in the United States of < 4,000 cases.[53][54] About 25,000 cases of myeloid leukemia occur in the United States each year.[55][56] Workplace exposure to inhaled chemicals is among the most important risk factors for sinonasal cancers.[57] Professionals exposed to formaldehyde in their occupation, such as funeral industry workers and embalmers, showed an increased risk of leukemia and brain cancer compared with the general population.[58] Other factors are important in determining individual risk for the development of leukemia or nasopharyngeal cancer.[57][59][60] In the residential environment, formaldehyde exposure comes from a number of different routes; formaldehyde can off-gas from wood products, such as plywood or particle board, but it is produced by paints, varnishes, floor finishes, and cigarette smoking as well.[61] In July 2016, the EPA released a prepublication version of its final rule on Formaldehyde
Emission Standards for Composite Wood Products. These new rules will impact manufacturers, importers, distributors, and retailers of products containing composite wood, including fiberboard, particleboard and various laminated products, who will need to comply with more stringent record-keeping and labeling requirements.[62] The United States Environmental Protection Agency
United States Environmental Protection Agency
(EPA) allows no more than 0.016 ppm formaldehyde in the air in new buildings constructed for that agency.[63] A U.S. Environmental Protection Agency study found a new home measured 0.076 ppm when brand new and 0.045 ppm after 30 days.[64] The Federal Emergency Management Agency (FEMA) has also announced limits on the formaldehyde levels in trailers purchased by that agency.[65] The EPA recommends the use of "exterior-grade" pressed-wood products with phenol instead of urea resin to limit formaldehyde exposure, since pressed-wood products containing formaldehyde resins are often a significant source of formaldehyde in homes.[50]

Patch test

For most people, irritation from formaldehyde is temporary and reversible, though formaldehyde can cause allergies and is part of the standard patch test series. In 2005–06, it was the seventh-most-prevalent allergen in patch tests (9.0%).[66] People with formaldehyde allergy are advised to avoid formaldehyde releasers as well (e.g., Quaternium-15, imidazolidinyl urea, and diazolidinyl urea).[67] People who suffer allergic reactions to formaldehyde tend to display lesions on the skin in the areas that have had direct contact with the substance, such as the neck or thighs (often due to formaldehyde released from permanent press finished clothing) or dermatitis on the face (typically from cosmetics).[68] Formaldehyde has been banned in cosmetics in both Sweden
and Japan.[citation needed] The eyes are most sensitive to formaldehyde exposure: The lowest level at which many people can begin to smell formaldehyde is about 0.05 ppm and the highest level is 1 ppm. The maximum concentration value at the workplace is 0.3 ppm.[69] In controlled chamber studies, individuals begin to sense eye irritation at about 0.5 ppm; 5 to 20 percent report eye irritation at 0.5 to 1 ppm; and greater certainty for sensory irritation occurred at 1 ppm and above. While some agencies have used a level as low as 0.1 ppm as a threshold for irritation, the expert panel found that a level of 0.3 ppm would protect against nearly all irritation. In fact, the expert panel found that a level of 1.0 ppm would avoid eye irritation—the most sensitive endpoint—in 75–95% of all people exposed.[70] Formaldehyde
levels in building environments are affected by a number of factors. These include the potency of formaldehyde-emitting products present, the ratio of the surface area of emitting materials to volume of space, environmental factors, product age, interactions with other materials, and ventilation condition. Formaldehyde
emits from a variety of construction materials, furnishings, and consumer products. The three products that emit the highest concentrations are medium density fiberboard, hardwood plywood, and particle board. Environmental factors such as temperature and relative humidity can elevate levels because formaldehyde has a high vapor pressure. Formaldehyde
levels from building materials are the highest when a building first opens because materials would have less time to off-gas. Formaldehyde
levels decrease over time as the sources suppress. Formaldehyde
levels in air can be sampled and tested in several ways, including impinger, treated sorbent, and passive monitors.[71] The National Institute for Occupational Safety and Health
National Institute for Occupational Safety and Health
(NIOSH) has measurement methods numbered 2016, 2541, 3500, and 3800.[72] Studies on the interactions between formaldehyde and proteins at the molecular level have been reported on the effects of the body’s carrier protein, serum albumin. The binding of formaldehyde loosens the skeletal structure of albumin and exposure of aromatic ring amino acids in the internal hydrophobic region. Symptoms may affect personal awareness, making one feel tired or fatigued.[citation needed] Formaldehyde
inhalation has also shown to cause oxidative stress and inflammation in animals. Mice studied over an exposure to a high dose of formaldehyde (3ppm), showed increased NO− 3 levels in plasma. This result suggests that FA inhalation either decreased NO production or increased NO scavenging, which may be an anti-stress mechanism in the body. Formaldehyde
inhalation changes the sensitivity of immune system, which influences oxidative stress.[citation needed] In June 2011, the twelfth edition of the National Toxicology Program (NTP) Report on Carcinogens (RoC) changed the listing status of formaldehyde from "reasonably anticipated to be a human carcinogen" to "known to be a human carcinogen".[13][14][15] Concurrently, a National Academy of Sciences (NAS) committee was convened and issued an independent review of the draft United States Environmental Protection Agency IRIS assessment of formaldehyde, providing a comprehensive health effects assessment and quantitative estimates of human risks of adverse effects.[73] International bans[edit] There are several web articles claiming that formaldehyde has been banned from manufacture or import into the European Union (EU) under REACH (Registration, Evaluation, Authorization, and restriction of Chemical substances) legislation. This appears to be misinformation, as official EU chemical databases[which?] contradict these claims as of February 19, 2010. This misconception has gained some ground. Formaldehyde
is not listed in the Annex I of Regulation (EC) No 689/2008 (export and import of dangerous chemicals regulation), nor on a priority list for risk assessment. However, formaldehyde is banned from use in certain applications (preservatives for liquid-cooling and processing systems, slimicides, metalworking-fluid preservatives, and antifouling products) under the Biocidal Products Directive.[74][75] In the EU, the maximum allowed concentration of formaldehyde in finished products is 0.2%, and any product that exceeds 0.05% has to include a warning that the product contains formaldehyde.[68] In the United States, a bill was passed in Congress on July 7, 2010, regarding the use of formaldehyde in hardwood plywood, particle board, and medium density fiberboard. The bill limited the allowable amount of formaldehyde emissions from these wood products to .09 ppm, a standard which companies were required to meet by January 2013.[76] Formaldehyde
was declared a toxic substance by the 1999 Canadian Environmental Protection Act.[77] Formaldehyde
issues in trailers[edit]

External media


"Episode 202: Where Have All the FEMA Trailers Gone? Tracing Toxicity from Bust to Boom", Distillations, September 2, 2015, Science History Institute


Where Have All the Trailers Gone?, Video by Mariel Carr (Videographer) & Nick Shapiro (Researcher), 2015, Science History Institute

Hurricanes Katrina and Rita[edit] In the U.S. the Federal Emergency Management Agency
Federal Emergency Management Agency
(FEMA) provided travel trailers, recreational park trailers and manufactured homes starting in 2006 for habitation by residents of the U.S. gulf coast displaced by Hurricane Katrina
Hurricane Katrina
and Hurricane Rita. Some of the people who moved into the FEMA trailers complained of breathing difficulties, nosebleeds, and persistent headaches. Formaldehyde-catalyzed resins were used in the production of these homes. The United States Centers For Disease Control and Prevention (CDC) performed indoor air quality testing for formaldehyde[78] in some of the units. On February 14, 2008, the CDC announced that potentially hazardous levels of formaldehyde were found in many of the travel trailers and manufactured homes provided by the agency.[79][80] The CDC's preliminary evaluation of a scientifically established random sample of 519 travel trailers and manufactured homes tested between December 21, 2007, and January 23, 2008 (2+ years after manufacture), showed average levels of formaldehyde in all units of about 0.077 parts per million (ppm). Long-term exposure to levels in this range can be linked to an increased risk of cancer and, at levels above this range, there can also be a risk of respiratory illness. These levels are higher than expected in indoor air, where levels are commonly in the range of 0.01–0.02 ppm, and are higher than the Agency for Toxic Substance Disease Registry (ATSDR, division of the CDC) Minimal Risk Level (MRL) of 0.008 ppm.[81] Levels measured ranged from 0.003 ppm to 0.59 ppm.[82] FEMA, which requested the testing by the CDC, said it would work aggressively to relocate all residents of the temporary housing as soon as possible. Lawsuits were filed against FEMA trailer manufacturers as a result of the exposures.[83] As of 2012, U.S. District Judge Kurt D. Engelhardt of New Orleans approved a $42.6 million class-action lawsuit settlement for the plaintiffs, who included roughly 55,000 residents of Louisiana, Mississippi, Alabama and Texas. The defendants included two dozen manufacturers who built mobile homes for the Federal Emergency Management Agency
Federal Emergency Management Agency
(FEMA), including Gulf Stream Coach Inc., Forest River Inc., Vanguard LLC and Monaco Coach Corp. A separate $5.1 million settlement dealt with claims against FEMA contractors including Shaw Environmental Inc., Bechtel Corp., Fluor Enterprises Inc. and CH2M Hill Constructors Inc., who were responsible for installing and maintaining the units.[84] Iowa floods of 2008[edit] Also in the U.S., problems arose in trailers again provided by FEMA to residents displaced by the Iowa floods of 2008. Several months after moving to the trailers, occupants reported violent coughing, headaches, as well as asthma, bronchitis, and other problems. Tests showed that in some trailers, levels of formaldehyde exceeded the limits recommended by the U.S. Environmental Protection Agency
Environmental Protection Agency
and American Lung Association.[85][86][87] The associated publicity has resulted in additional testing to begin in November.[88] Contaminant in food[edit] Formaldehyde
occurs naturally and is "an essential intermediate in cellular metabolism in mammals and humans."[11] At high concentrations it is probably unhealthy. Scandals have broken in both the 2005 Indonesia
food scare and 2007 Vietnam food scare regarding the addition of formaldehyde to foods to extend shelf life. In 2011, after a four-year absence, Indonesian authorities found foods with formaldehyde being sold in markets in a number of regions across the country. Besides using formaldehyde, they also used borax, but not in combination.[89] In August 2011, at least at two Carrefour supermarkets, the Central Jakarta
Livestock and Fishery Sub-Department found a sweet glutinous rice drink (cendol) contained 10 parts per million of formaldehyde.[90] In 2014, the owner of two noodle factories in Bogor, Indonesia; was arrested for using formaldehyde in noodles. 50 kg of formaldehyde was confiscated.[91] Foods known to be contaminated include noodles, salted fish, and tofu; chicken and beer are also rumored to be contaminated. In some places, such as China, formaldehyde is still used illegally as a preservative in foods, which exposes people to formaldehyde ingestion.[92] In humans, the ingestion of formaldehyde has been shown to cause vomiting, abdominal pain, dizziness, and in extreme cases can cause death. Testing for formaldehyde is by blood and/or urine by gas chromatography-mass spectrometry. Other methods include infrared detection, gas detector tubes, etc., of which HPLC is the most sensitive.[93] In the early 1900s, it was frequently added by US milk plants to milk bottles as a method of pasteurization due to the lack of knowledge regarding formaldehyde's toxicity.[94][95] In 2011 in Nakhon Ratchasima, Thailand, truckloads of rotten chicken were exposed to formaldehyde in which "a large network," including 11 slaughterhouses run by a criminal gang, were implicated.[96] In 2012, 1 billion rupiah (almost USD100,000) of fish imported from Pakistan
to Batam, Indonesia, were found laced with formaldehyde.[97] Formalin
contamination of foods has been reported in Bangladesh, with stores and supermarkets selling fruits, fishes, and vegetables that have been treated with formalin to keep them fresh.[98] However, in 2015, a Formalin
Control Bill was passed in the Parliament of Bangladesh
with a provision of life-term imprisonment as the maximum punishment and in addition 2,000,000 BDT as fine but not less than 500,000 BDT for importing, production or hoarding of formalin without license.[99] See also[edit]

1,3-Dioxetane DMDM hydantoin Sulphobes


^ a b Nomenclature of Organic Chemistry : IUPAC Recommendations and Preferred Names 2013 (Blue Book). Cambridge: The Royal Society of Chemistry. 2014. p. 908. doi:10.1039/9781849733069-FP001. ISBN 978-0-85404-182-4.  ^ a b Formaldehyde
(PDF), SIDS Initial Assessment Report, International Programme on Chemical Safety ^ Spence, Robert, and William Wild. "114. The vapour-pressure curve of formaldehyde, and some related data." Journal of the Chemical Society (Resumed) (1935): 506-509 ^ " PubChem Compound Database; CID=712". National Center for Biotechnology Information. Retrieved 2017-07-08.  ^ http://chemistry.stackexchange.com/questions/12232/acidity-of-aldehydes ^ Weast, Robert C., ed. (1981). CRC Handbook of Chemistry and Physics (62nd ed.). Boca Raton, FL: CRC Press. pp. C–301, E–61. ISBN 0-8493-0462-8.  ^ a b c "NIOSH Pocket Guide to Chemical Hazards #0293". National Institute for Occupational Safety and Health (NIOSH).  ^ "NIOSH Pocket Guide to Chemical Hazards #0294". National Institute for Occupational Safety and Health (NIOSH).  ^ http://chem.sis.nlm.nih.gov/chemidplus/rn/50-00-0 ^ a b "Formaldehyde". Immediately Dangerous to Life and Health Concentrations (IDLH). National Institute for Occupational Safety and Health (NIOSH).  ^ a b c d e f Günther Reuss, Walter Disteldorf, Armin Otto Gamer, Albrecht Hilt "Formaldehyde" in Ullmann's Encyclopedia of Industrial Chemistry, 2002, Wiley-VCH, Weinheim. doi:10.1002/14356007.a11_619 ^ "Formaldehyde", Formaldehyde, 2-Butoxyethanol and 1-tert-Butoxypropan-2-ol (PDF), IARC Monographs on the Evaluation of Carcinogenic Risks to Humans 88, Lyon, France: International Agency for Research on Cancer, 2006, pp. 39–325, ISBN 92-832-1288-6  " Formaldehyde
(gas)", Report on Carcinogens, Eleventh Edition (PDF), U.S. Department of Health and Human Services, Public Health Service, National Toxicology Program, 2005  ^ a b Harris, Gardiner (10 June 2011). "Government Says 2 Common Materials Pose Risk of Cancer". New York Times. Retrieved 2011-06-11.  ^ a b National Toxicology Program
National Toxicology Program
(10 June 2011). "12th Report on Carcinogens". National Toxicology Program. Retrieved 2011-06-11.  ^ a b National Toxicology Program
National Toxicology Program
(10 June 2011). "Report On Carcinogens – Twelfth Edition – 2011" (PDF). National Toxicology Program. Retrieved 2011-06-11.  ^ Merriam-Webster, Merriam-Webster's Collegiate Dictionary, Merriam-Webster.  ^ "Review of the Formaldehyde
Assessment in the National Toxicology Program 12th Report on Carcinogens". p. 91.  ^ "Review of the Formaldehyde
Assessment in the National Toxicology Program 12th Report on Carcinogens". p. 95.  ^ " Formaldehyde
Is Biodegradable, Quickly Broken Down in the Air By Sunlight or By Bacteria
in Soil or Water". Formaldehyde
Panel of the American Chemistry Council. Retrieved 22 April 2017.  ^ Zuckerman, B.; Buhl, D.; Palmer, P.; Snyder, L. E. (1970). "Observation of interstellar formaldehyde". Astrophys. J. 160: 485–506. Bibcode:1970ApJ...160..485Z. doi:10.1086/150449.  ^ Mangum, Jeffrey G.; Darling, Jeremy; Menten, Karl M.; Henkel, Christian (2008). " Formaldehyde
Densitometry of Starburst Galaxies". Astrophys. J. 673 (2): 832–46. arXiv:0710.2115 . Bibcode:2008ApJ...673..832M. doi:10.1086/524354.  ^ Woon, David E. (2002). "Modeling Gas-Grain Chemistry with Quantum Chemical Cluster Calculations. I. Heterogeneous Hydrogenation of CO and H2CO on Icy Grain Mantles". Astrophys. J. 569: 541–48. Bibcode:2002ApJ...569..541W. doi:10.1086/339279.  ^ Zubritsky, Elizabeth; Neal-Jones, Nancy (11 August 2014). "RELEASE 14-038 - NASA's 3-D Study of Comets Reveals Chemical Factory at Work". NASA. Retrieved 12 August 2014.  ^ Cordiner, M.A.; et al. (11 August 2014). "Mapping the Release of Volatiles in the Inner Comae of Comets C/2012 F6 (Lemmon)
C/2012 F6 (Lemmon)
and C/2012 S1 (ISON) Using the Atacama Large Millimeter/Submillimeter Array". The Astrophysical Journal. 792 (1): L2. Bibcode:2014ApJ...792L...2C. doi:10.1088/2041-8205/792/1/L2. Retrieved 12 August 2014.  ^ A. Butlerow (1859) "Ueber einige Derivate des Jodmethylens" (On some derivatives of methylene iodide), Annalen der Chemie und Pharmacie, vol . 111, pages 242–252. In this paper, Butlerov discovered formaldehyde, which he called "Dioxymethylen" (methylene dioxide) [page 247] because his empirical formula for it was incorrect (C4H4O4). ^ In 1867, A. W. Hofmann first announced to the Royal Prussian Academy of Sciences the production of formaldehyde by passing methanol vapor in air over hot platinum wire. See: A. W. Hofmann (14 October 1867) "Zur Kenntnis des Methylaldehyds" ([Contributions] to our knowledge of methylaldehyde), Monatsbericht der Königlich Preussischen Akademie der Wissenschaften zu Berlin (Monthly Report of the Royal Prussian Academy of Sciences in Berlin), vol. 8, pages 665–669. Reprinted in:

A.W. Hofmann, (1868) "Zur Kenntnis des Methylaldehyds", Annalen der Chemie und Pharmacie (Annals of Chemistry and Pharmacy), vol. 145, no. 3, pages 357–361. A.W. Hofmann (1868) "Zur Kenntnis des Methylaldehyds", Journal für praktische Chemie (Journal for Practical Chemistry), vol. 103, no. 1, pages 246–250.

However, it was not until 1869 that Hofmann determined the correct empirical formula of formaldehyde. See: A.W. Hofmann (5 April 1869) "Beiträge zur Kenntnis des Methylaldehyds", Monatsbericht der Königlich Preussischen Akademie der Wissenschaften zu Berlin, vol. ?, pages 362–372. Reprinted in:

Hofmann, A.W. (1869). "Beiträge zur Kenntnis des Methylaldehyds". Journal für Praktische Chemie. 107 (1): 414–424. doi:10.1002/prac.18691070161.  A.W. Hofmann (1869) "Beiträge zur Kenntnis des Methylaldehyds," Berichte der Deutschen Chemischen Gesellschaft (Reports of the German Chemical Society), vol. 2, pages 152–159.

^ Read, J. (1935). Text- Book
of Organic Chemistry. London: G Bell & Sons.  ^ Bost, R. W.; Constable, E. W. (1936). "sym-Trithiane". Organic Syntheses. 16: 81. ; Collective Volume, 2, p. 610  ^ Gutsche, C. D.; Iqbal, M. (1993). "p-tert-Butylcalix[4]arene". Organic Syntheses. ; Collective Volume, 8, p. 75  ^ " Formaldehyde
in Clothing and Textiles FactSheet". NICNAS. Australian National Industrial Chemicals Notification and Assessment Scheme. May 2013. Retrieved 12 November 2014.  ^ Economic Importance, Formaldehyde
Council. 2009. Accessed on April 14, 2010. ^ Schurink, H. B. J. (1925). "Pentaerythritol". Organic Syntheses. 4: 53. ; Collective Volume, 1, p. 425  ^ Francis-Floyd, Ruth (April 1996). "Use of Formalin
to Control Fish Parasites". Institute of Food and Agricultural Sciences, University of Florida. Archived from the original on May 27, 2012.  ^ Center for Disease Control: Vaccines ^ U.S. Government Publishing Office title=§573.460 Formaldehyde url=http://www.ecfr.gov/cgi-bin/text-idx?SID=373e2ce8edf3f674e80eb9270a461c7d&mc=true&node=se21.6.573_1460&rgn=div8 ^ Directive 98/8/EC of the European Parliament and of the Council of 16 February 1998 concerning the placing of biocidal products on the market. OJEU L123, 24.04.1998, pp. 1–63. (consolidated version to 2008-09-26 (PDF)) ^ Commission Regulation (EC) No 2032/2003 of 4 November 2003 on the second phase of the 10-year work programme referred to in Article 16(2) of Directive 98/8/EC of the European Parliament and of the Council concerning the placing of biocidal products on the market, and amending Regulation (EC) No 1896/2000. OJEU L307, 24.11.2003, p. 1–96. (consolidated version to 2007-01-04 (PDF)) ^ Patel, Alkesh (2007-07-04). " Formaldehyde
Ban set for 22 September 2007". WebWire. Retrieved 19 May 2012.  ^ "European chemical Substances Information System (ESIS) entry for formaldehyde". Archived from the original on 2014-01-01. Retrieved 2009-09-01.  ^ "Process C-41 Using Kodak Flexicolor Chemicals – Publication Z-131". Kodak. Retrieved 2009-09-01.  ^ "Medical Management Guidelines for Formaldehyde".  ^ "Indoor Air Pollution
in California" (PDF). Air Resources Board, California Environmental Protection Agency. July 2005. pp. 65–70. Retrieved 19 May 2012.  ^ "Formaldehyde". Occupational Safety and Health Administration. August 2008. Retrieved 2009-09-01.  ^ " Formaldehyde
Reference Exposure Levels" (PDF). California Office Of Health Hazard Assessment. December 2008. Retrieved 19 May 2012.  ^ Formaldehyde
and Indoor Air. Health Canada. August 2005. ISBN 0-8155-1129-9. Retrieved 2009-09-01.  ^ Broder, I; Corey, P; Brasher, P; Lipa, M; Cole, P (1991). " Formaldehyde
exposure and health status in households". Environmental Health Perspectives. 95: 101–4. doi:10.1289/ehp.9195101. PMC 1568408 . PMID 1821362.  ^ McGwin, G; Lienert, J; Kennedy, JI (November 2009). "Formaldehyde Exposure and Asthma
in Children: A Systematic Review". Environmental Health Perspectives. Environmental Health Perspectives. 118 (3): 313–7. doi:10.1289/ehp.0901143. PMC 2854756 . PMID 20064771.  ^ "Role of mitochondrial processes in the development and aging of organism. Aging and cancer" (PDF). Deposited Doc., VINITI 2172-78. 1978: 48  ^ "IARC Monographs on the Evaluation of Carcinogenic Risks to Humans Volume 88 (2006) Formaldehyde, 2-Butoxyethanol and 1-tert-Butoxypropan-2-ol" (pdf, html). WHO
Press, 2006( English )  ^ a b " Formaldehyde
and Cancer Risk".  ^ Zhang, Luoping; Steinmaus, Craig; Eastmond, Eastmond; Xin, Xin; Smith, Smith (March–June 2009). " Formaldehyde
exposure and leukemia: A new meta-analysis and potential mechanisms" (PDF). Mutation Research/Reviews in Mutation Research. Mutation Research/Reviews in Mutation Research. 681 (2–3): 150–168. doi:10.1016/j.mrrev.2008.07.002. PMID 18674636. Retrieved 2013-05-22.  ^ " Formaldehyde
and Leukemia: Epidemiology, Potential Mechanisms, and Implications for Risk Assessment". Environmental and Molecular Mutagenesis. Environmental and Molecular Mutagenesis. 51: 181–191. 2010. doi:10.1002/em.20534.  ^ "What are the key statistics about nasopharyngeal cancer?".  ^ Turner JH, Reh DD (June 2012). "Incidence and survival in patients with sinonasal cancer: a historical analysis of population-based data". Head Neck. 34 (6): 877–85. doi:10.1002/hed.21830. PMID 22127982.  ^ "What are the key statistics about chronic myeloid leukemia?".  ^ "What are the key statistics about acute myeloid leukemia?".  ^ a b "What are the risk factors for nasopharyngeal cancer?".  ^ Butticè, Claudio (2015). "Solvents". In Colditz, Graham A. The SAGE Encyclopedia of Cancer and Society (Second ed.). Thousand Oaks: SAGE Publications, Inc. pp. 1089–1091. doi:10.4135/9781483345758.n530. ISBN 9781483345734.  ^ "What are the risk factors for acute myeloid leukemia?".  ^ "What are the risk factors for chronic myeloid leukemia?".  ^ Dales, R; Liu, L; Wheeler, AJ; Gilbert, NL (July 2008). "Quality of indoor residential air and health". Canadian Medical Association Journal. Canadian Medical Association Journal. 179 (2): 147–52. doi:10.1503/cmaj.070359. PMC 2443227 . PMID 18625986.  ^ Passmore, Whitney; Sullivan, Michael J. (August 4, 2016). "EPA Issues Final Rule on Formaldehyde
Emission Standards for Composite Wood Products". The National Law Review. Womble Carlyle Sandridge & Rice, PLLC. Retrieved August 24, 2016 – via Google News.  ^ "Testing for Indoor Air Quality, Baseline IAQ, and Materials". Environmental Protection Agency. Archived from the original on October 15, 2006.  ^ Residential Indoor Air Formaldehyde
Testing Program: A Pilot Study," M. Koontz, et al, prepared for U.S. EPA, 1996 ^ Evans, Ben (2008-04-11). "FEMA limits formaldehyde in trailers". Boston.com. Archived from the original on June 15, 2010. Retrieved 2008-09-04.  ^ Zug KA, Warshaw EM, Fowler JF Jr, Maibach HI, Belsito DL, Pratt MD, Sasseville D, Storrs FJ, Taylor JS, Mathias CG, Deleo VA, Rietschel RL, Marks J. Patch-test results of the North American Contact Dermatitis
Group 2005–2006. Dermatitis. 2009 May–Jun;20(3):149-60. ^ " Formaldehyde
allergy". DermNet NZ. New Zealand Dermatological Society. June 2009. Retrieved 2009-09-01.  ^ a b De Groot, Anton C; Flyvholm, Mari-Ann; Lensen, Gerda; Menné, Torkil; Coenraads, Pieter-Jan (2009). "Formaldehyde-releasers: relationship to formaldehyde contact allergy. Contact allergy to formaldehyde and inventory of formaldehyde-releasers". Contact Dermatitis. 61 (2): 63–85. doi:10.1111/j.1600-0536.2009.01582.x. PMID 19706047.  ^ Formaldehyde
CAS 50-00-0 (PDF) ^ Formaldehyde
and Facts About Health Effects (PDF). Formaldehyde Epidemiology, Toxicology and Environmental Group. August 2002. Accessed on April 25, 2010. ^ When Sampling Formaldehyde, The Medium Matters ^ NIOSH Pocket Gide to Chemical Hazards: Formaldehyde ^ Addendum to the 12th Report on Carcinogens (PDF) National Toxicology Program, U.S. Department of Health and Human Services, retrieved 06-13-2011 ^ "European Union Bans formaldehyde/formalin within Europe" (PDF). European Commission's Environment Directorate-General. September 2007. pp. 1–3. Retrieved 19 May 2012.  ^ "ESIS (European Chemical Substances Information System)". European Commission Joint Research Centre Institute for Health and Consumer Protection. February 2009. Archived from the original on 1 January 2014. Retrieved 19 May 2012.  ^ "S.1660 – Formaldehyde
Standards for Composite Wood Products Act". OpenCongress. July 2010. Retrieved 19 May 2012.  ^ "Health Canada – Proposed residential indoor air quality guidelines for formaldehyde". Health Canada. April 2007.  ^ CFC.gov (PDF) ^ Formaldehyde
Levels in FEMA-Supplied Trailers (PDF) ^ Mike Brunker (2006-07-25). "Are FEMA trailers 'toxic tin cans'?". MSNBC. Retrieved 19 May 2012.  ^ ATSDR – Minimal Risk Levels for Hazardous Substances (MRLs) ^ FEMA: CDC Releases Results Of Formaldehyde
Level Tests ^ Kunzelman, Michael (2007-08-08). "Suit Filed Over FEMA Trailer Toxins". The Washington Post. Retrieved 2010-05-02.  ^ Brunker, Mike (September 28, 2012). "Class-action suit against FEMA trailer manufacturers settled for $42.6 million". NBC News. Retrieved 11 September 2015.  ^ Megan Terlecky (2008-10-24). "How We Tested for Formaldehyde". KGAN-TV. Archived from the original on June 15, 2011.  ^ "FEMA Trailers in Iowa Exceed Formaldehyde
Levels Considered Safe". Insurance Journal. October 23, 2008. Retrieved 16 September 2015.  ^ Nigel Duara (2008-10-21). "FEMA disputes formaldehyde study of Iowa trailers". Associated Press. Archived from the original on October 31, 2008.  ^ Cindy Hadish (2008-10-24). "FEMA meets with mobile home residents over health concerns". Cedar Rapids Gazette. Archived from the original on February 22, 2009.  ^ "Formaldehyde-laced foods reemerge in Indonesian markets". August 10, 2011.  ^ "Formaldehyde-Tainted Rice Drinks Found at Carrefour
Markets". August 22, 2011.  ^ "BPOM Uncovers Two Formaldehyde-Tainted Noodle Factories in Bogor". October 12, 2014.  ^ Xiaojiang Tang et al., " Formaldehyde
in China: Production, consumption, exposure levels, and health effects (PDF)", Environment International 35 (2009): 1215–16, and other references cited on p. 1216; see also "Municipality sees red over bad blood processing" (2011-03-18, China Daily, online English edition; retrieved on May 17, 2011). ^ Moise Ngwa (2010-10-25). "formaldehyde testing" (PDF). Cedar Rapids Gazette. Retrieved 19 May 2012.  ^ "Was Death in the Milk?". The Indianapolis News. July 31, 1900. p. 5. Retrieved August 20, 2014 – via Newspapers.com.  ^ "Wants New Law Enacted. Food Inspector Farnsworth Would Have Use of Formaldehyde
in Milk Stopped". The Topeka Daily Capital. August 30, 1903. p. 8. Retrieved August 20, 2014 – via Newspapers.com.  ^ Illegal business 'being run by a gang' - The Nation ^ Import of formaldehyde fish from Pakistan
foiled in BatamThe Jakarta
Post ^ Staff Correspondent, "Trader Fined for Selling Fish Treated with Formalin," Bangladesh2day, September 1, 2009 ^ http://en.ntvbd.com/bangladesh/923/Formalin-Control-Bill-2015-passed

External links[edit]

has the text of the 1911 Encyclopædia Britannica article Formalin.

International Chemical Safety Card 0275 (gas) International Chemical Safety Card 0695 (solution) "NIOSH Pocket Guide to Chemical Hazards #0293". National Institute for Occupational Safety and Health (NIOSH).  Entry for "Formaldehyde" on the Australian National Pollutant Inventory Formaldehyde
from ChemSub Online Prevention guide— Formaldehyde
in the Workplace (PDF) from the IRSST Formaldehyde
from the National Institute for Occupational Safety and Health IPCS Health and Safety Guide 57: Formaldehyde IPCS Environmental Health Criteria 89: Formaldehyde SIDS Initial Assessment Report for Formaldehyde
from the Organisation for Economic Co-operation and Development (OECD) Formaldehyde
Added to "Known Carcinogens" List Despite Lobbying by Chemical Industry — video report by Democracy Now! Do you own a post-Katrina FEMA trailer? Check your VIN# So you’re living in one of FEMA’s Katrina trailers... What can you do? Formaldehyde
in the Pesticide
Properties DataBase (PPDB)

v t e

Food safety

Adulterants, food contaminants

3-MCPD Aldicarb Cyanide Formaldehyde Lead poisoning Melamine Mercury in fish Sudan I


Monosodium glutamate
Monosodium glutamate
(MSG) Salt Sugar

High-fructose corn syrup


Botulism Campylobacter jejuni Clostridium perfringens Escherichia coli O104:H4 Escherichia coli O157:H7 Hepatitis A Hepatitis E Listeria Norovirus Rotavirus Salmonella

Parasitic infections through food

Amoebiasis Anisakiasis Cryptosporidiosis Cyclosporiasis Diphyllobothriasis Enterobiasis Fasciolopsiasis Fasciolosis Giardiasis Gnathostomiasis Paragonimiasis Toxoplasmosis Trichinosis Trichuriasis


Chlorpyrifos DDT Lindane Malathion Methamidophos


Benzoic acid Ethylenediaminetetraacetic acid
Ethylenediaminetetraacetic acid
(EDTA) Sodium benzoate


Acesulfame potassium Aspartame Saccharin Sodium cyclamate Sorbitol Sucralose

Toxins, poisons, environment pollution

Aflatoxin Arsenic contamination of groundwater Benzene
in soft drinks Bisphenol A Dieldrin Diethylstilbestrol Dioxin Mycotoxins Nonylphenol Shellfish poisoning

Food contamination incidents

Devon colic Swill milk scandal 1858 Bradford sweets poisoning 1900 English beer poisoning Morinaga Milk arsenic poisoning incident Minamata disease 1971 Iraq poison grain disaster Toxic oil syndrome 1993 Jack in the Box E. coli outbreak 1996 Odwalla E. coli outbreak 2006 North American E. coli outbreaks ICA meat repackaging controversy 2008 Canada listeriosis outbreak 2008 Chinese milk scandal 2008 Irish pork crisis 2008 United States salmonellosis outbreak 2011 Germany E. coli outbreak 2011 Taiwan food scandal 2011 United States listeriosis outbreak 2013 Bihar school meal poisoning 2013 horse meat scandal 2013 Taiwan food scandal 2014 Taiwan food scandal 2017 Brazil weak meat scandal 2017–18 South African listeriosis outbreak Food safety
Food safety
incidents in China Foodborne illness

outbreaks death toll United States

Regulation, standards, watchdogs

Acceptable daily intake E number Food labeling regulations Food libel laws International Food Safety Network ISO 22000 Quality Assurance International


Centre for Food Safety European Food Safety Authority Institute for Food Safety and Health International Food Safety Network Ministry of Food and Drug Safety

v t e

Molecules detected in outer space



Aluminium monochloride Aluminium monofluoride Aluminium monoxide Argonium Carbon
monophosphide Carbon
monosulfide Carbon
monoxide Carborundum Cyanogen
radical Diatomic carbon Fluoromethylidynium Hydrogen
chloride Hydrogen
fluoride Hydrogen
(molecular) Hydroxyl radical Iron(II) oxide Magnesium monohydride cation Methylidyne radical Nitric oxide Nitrogen
(molecular) Nitrogen
monohydride Nitrogen
sulfide Oxygen
(molecular) Phosphorus monoxide Phosphorus mononitride Potassium chloride Silicon carbide Silicon mononitride Silicon monoxide Silicon monosulfide Sodium chloride Sodium iodide Sulfur monohydride Sulfur monoxide Titanium oxide


Aluminium hydroxide Aluminium isocyanide Amino radical Carbon
dioxide Carbonyl sulfide CCP radical Chloronium Diazenylium Dicarbon monoxide Disilicon carbide Ethynyl radical Formyl radical Hydrogen cyanide
Hydrogen cyanide
(HCN) Hydrogen isocyanide
Hydrogen isocyanide
(HNC) Hydrogen
sulfide Hydroperoxyl Iron cyanide Isoformyl Magnesium cyanide Magnesium isocyanide Methylene radical N2H+ Nitrous oxide Nitroxyl Ozone Phosphaethyne Potassium cyanide Protonated molecular hydrogen Sodium cyanide Sodium hydroxide Silicon carbonitride c-Silicon dicarbide Silicon naphthalocyanine Sulfur dioxide Thioformyl Thioxoethenylidene Titanium dioxide Tricarbon Water

Four atoms

Acetylene Ammonia Cyanic acid Cyanoethynyl Cyclopropynylidyne Formaldehyde Fulminic acid HCCN Hydrogen
peroxide Hydromagnesium isocyanide Isocyanic acid Isothiocyanic acid Ketenyl Methylene amidogen Methyl radical Propynylidyne Protonated carbon dioxide Protonated hydrogen cyanide Silicon tricarbide Thioformaldehyde Tricarbon
monoxide Tricarbon
sulfide Thiocyanic acid

Five atoms

ion Butadiynyl Carbodiimide Cyanamide Cyanoacetylene Cyanoformaldehyde Cyanomethyl Cyclopropenylidene Formic acid Isocyanoacetylene Ketene Methane Methoxy
radical Methylenimine Propadienylidene Protonated formaldehyde Protonated formaldehyde Silane Silicon-carbide cluster

Six atoms

Acetonitrile Cyanobutadiynyl radical E-Cyanomethanimine Cyclopropenone Diacetylene Ethylene Formamide HC4N Ketenimine Methanethiol Methanol Methyl isocyanide Pentynylidyne Propynal Protonated cyanoacetylene

Seven atoms

Acetaldehyde Acrylonitrile

Vinyl cyanide

Cyanodiacetylene Ethylene
oxide Hexatriynyl radical Methylacetylene Methylamine Methyl isocyanate Vinyl alcohol

Eight atoms

Acetic acid Aminoacetonitrile Cyanoallene Ethanimine Glycolaldehyde Heptatrienyl radical Hexapentaenylidene Methylcyanoacetylene Methyl formate Propenal

Nine atoms

Acetamide Cyanohexatriyne Cyanotriacetylene Dimethyl ether Ethanol Methyldiacetylene Octatetraynyl radical Propene Propionitrile

Ten atoms or more

Acetone Benzene Benzonitrile Buckminsterfullerene
(C60 fullerene, buckyball) C70 fullerene Cyanodecapentayne Cyanopentaacetylene Cyanotetra-acetylene Ethylene
glycol Ethyl formate Methyl acetate Methyl-cyano-diacetylene Methyltriacetylene Propanal n-Propyl cyanide Pyrimidine

Deuterated molecules

Ammonia Ammonium
ion Formaldehyde Formyl radical Heavy water Hydrogen
cyanide Hydrogen
deuteride Hydrogen
isocyanide Methylacetylene N2D+ Trihydrogen cation


Anthracene Dihydroxyacetone Ethyl methyl ether Glycine Graphene H2NCO+ Linear C5 Naphthalene
cation Phosphine Pyrene Silylidine


Abiogenesis Astrobiology Astrochemistry Atomic and molecular astrophysics Chemical formula Circumstellar envelope Cosmic dust Cosmic ray Cosmochemistry Diffuse interstellar band Earliest known life forms Extraterrestrial life Extraterrestrial liquid water Forbidden mechanism Helium hydride ion Homochirality Intergalactic dust Interplanetary medium Interstellar medium Photodissociation region Iron–sulfur world theory Kerogen Molecules in stars Nexus for Exoplanet System Science Organic compound Outer space PAH world hypothesis Panspermia Polycyclic aromatic hydrocarbon
Polycyclic aromatic hydrocarbon
world hypothesis Spectroscopy Tholin

Book:Chemistry Category:Astrochemistry Category:Molecules Portal:Astrobiology Portal:Astronomy Portal:Chemistry

v t e

TRP channel modulators



4-Hydroxynonenal 4-Oxo-2-nonenal 4,5-EET 12S-HpETE 15-Deoxy-Δ12,14-prostaglandin J2 α- Sanshool
(ginger, Sichuan and melegueta peppers) Acrolein Allicin
(garlic) Allyl isothiocyanate
Allyl isothiocyanate
(mustard, radish, horseradish, wasabi) AM404 Bradykinin Cannabichromene
(cannabis) Cannabidiol
(cannabis) Cannabigerol
(cannabis) Cinnamaldehyde
(cinnamon) CR gas
CR gas
(dibenzoxazepine; DBO) CS gas
CS gas
(2-chlorobenzal malononitrile) Curcumin
(turmeric) Dehydroligustilide (celery) Diallyl disulfide Dicentrine
( Lindera
spp.) Farnesyl thiosalicylic acid Formalin Gingerols (ginger) Hepoxilin A3 Hepoxilin B3 Hydrogen
peroxide Icilin Isothiocyanate Ligustilide (celery, Angelica acutiloba) Linalool
(Sichuan pepper, thyme) Methylglyoxal Methyl salicylate
Methyl salicylate
(wintergreen) N-Methylmaleimide Nicotine
(tobacco) Oleocanthal
(olive oil) Paclitaxel
(Pacific yew) Paracetamol
(acetaminophen) PF-4840154 Phenacyl chloride Polygodial
(Dorrigo pepper) Shogaols (ginger, Sichuan and melegueta peppers) Tear gases Tetrahydrocannabinol
(cannabis) Thiopropanal S-oxide
Thiopropanal S-oxide
(onion) Umbellulone
(Umbellularia californica) WIN 55,212-2


Dehydroligustilide (celery) Nicotine
(tobacco) Ruthenium red



(St John's wort) Diacyl glycerol GSK1702934A Hyperforin
(St John's wort) Substance P


DCDPC DHEA-S Flufenamic acid GSK417651A GSK2293017A Meclofenamic acid N-(p-amylcinnamoyl)anthranilic acid Niflumic acid Pregnenolone sulfate Progesterone Pyr3 Tolfenamic acid



ADP-ribose BCTC Calcium
(intracellular) Cold Coolact P Cooling Agent 10 CPS-369 Eucalyptol
(eucalyptus) Frescolat MGA Frescolat ML Geraniol Hydroxycitronellal Icilin Linalool Menthol
(mint) PMD 38 Pregnenolone sulfate Rutamarin (Ruta graveolens) Steviol glycosides (e.g., stevioside) (Stevia rebaudiana) Sweet tastants (e.g., glucose, fructose, sucrose; indirectly) Thio-BCTC WS-3 WS-12 WS-23


Capsazepine Clotrimazole DCDPC Flufenamic acid Meclofenamic acid Mefenamic acid N-(p-amylcinnamoyl)anthranilic acid Nicotine
(tobacco) Niflumic acid Ruthenium red Rutamarin (Ruta graveolens) Tolfenamic acid TPPO



MK6-83 PI(3,5)P2 SF-22



(Tripterygium wilfordii)


Ruthenium red



2-APB 5',6'-EET 9-HODE 9-oxoODE 12S-HETE 12S-HpETE 13-HODE 13-oxoODE 20-HETE α- Sanshool
(ginger, Sichuan and melegueta peppers) Allicin
(garlic) AM404 Anandamide Bisandrographolide (Andrographis paniculata) Camphor
(camphor laurel, rosemary, camphorweed, African blue basil, camphor basil) Cannabidiol
(cannabis) Cannabidivarin
(cannabis) Capsaicin
(chili pepper) Carvacrol
(oregano, thyme, pepperwort, wild bergamot, others) DHEA Diacyl glycerol Dihydrocapsaicin
(chili pepper) Estradiol Eugenol
(basil, clove) Evodiamine
(Euodia ruticarpa) Gingerols (ginger) GSK1016790A Heat Hepoxilin A3 Hepoxilin B3 Homocapsaicin
(chili pepper) Homodihydrocapsaicin
(chili pepper) Incensole
(incense) Lysophosphatidic acid Low pH (acidic conditions) Menthol
(mint) N-Arachidonoyl dopamine N-Oleoyldopamine N-Oleoylethanolamide Nonivamide
(PAVA) (PAVA spray) Nordihydrocapsaicin
(chili pepper) Paclitaxel
(Pacific yew) Paracetamol
(acetaminophen) Phorbol esters
Phorbol esters
(e.g., 4α-PDD) Piperine
(black pepper, long pepper) Polygodial
(Dorrigo pepper) Probenecid Protons RhTx Rutamarin (Ruta graveolens) Resiniferatoxin
(RTX) (Euphorbia resinifera/pooissonii) Shogaols (ginger, Sichuan and melegueta peppers) Tetrahydrocannabivarin
(cannabis) Thymol
(thyme, oregano) Tinyatoxin
(Euphorbia resinifera/pooissonii) Tramadol Vanillin
(vanilla) Zucapsaicin


α- Spinasterol
( Vernonia
tweediana) AMG-517 Asivatrep BCTC Cannabigerol
(cannabis) Cannabigerolic acid (cannabis) Cannabigerovarin (cannabis) Cannabinol
(cannabis) Capsazepine DCDPC DHEA DHEA-S Flufenamic acid GRC-6211 HC-067047 Lanthanum Meclofenamic acid N-(p-amylcinnamoyl)anthranilic acid NGD-8243 Niflumic acid Pregnenolone sulfate RN-1734 RN-9893 Ruthenium red SB-705498 Tivanisiran Tolfenamic acid

See also: Receptor/signaling modulators • Ion channel modulators

Authority control

LCCN: sh85050805 GND: 40178