Follicular dendritic cells
   HOME

TheInfoList



OR:

Follicular dendritic cells (FDC) are cells of the
immune system The immune system is a network of biological processes that protects an organism from diseases. It detects and responds to a wide variety of pathogens, from viruses to parasitic worms, as well as cancer cells and objects such as wood splinte ...
found in primary and secondary lymph follicles (
lymph node A lymph node, or lymph gland, is a kidney-shaped organ of the lymphatic system and the adaptive immune system. A large number of lymph nodes are linked throughout the body by the lymphatic vessels. They are major sites of lymphocytes that includ ...
s) of the
B cell B cells, also known as B lymphocytes, are a type of white blood cell of the lymphocyte subtype. They function in the humoral immunity component of the adaptive immune system. B cells produce antibody molecules which may be either secreted o ...
areas of the
lymphoid tissue The lymphatic system, or lymphoid system, is an organ system in vertebrates that is part of the immune system, and complementary to the circulatory system. It consists of a large network of lymphatic vessels, lymph nodes, lymphatic or lymphoid o ...
. Unlike
dendritic cell Dendritic cells (DCs) are antigen-presenting cells (also known as ''accessory cells'') of the mammalian immune system. Their main function is to process antigen material and present it on the cell surface to the T cells of the immune system. Th ...
s (DC), FDCs are not derived from the bone-marrow
hematopoietic stem cell Hematopoietic stem cells (HSCs) are the stem cells that give rise to other blood cells. This process is called haematopoiesis. In vertebrates, the very first definitive HSCs arise from the ventral endothelial wall of the embryonic aorta within ...
, but are of
mesenchymal Mesenchyme () is a type of loosely organized animal embryonic connective tissue of undifferentiated cells that give rise to most tissues, such as skin, blood or bone. The interactions between mesenchyme and epithelium help to form nearly every ...
origin. Possible functions of FDC include: organizing
lymphoid tissue The lymphatic system, or lymphoid system, is an organ system in vertebrates that is part of the immune system, and complementary to the circulatory system. It consists of a large network of lymphatic vessels, lymph nodes, lymphatic or lymphoid o ...
's cells and microarchitecture, capturing
antigen In immunology, an antigen (Ag) is a molecule or molecular structure or any foreign particulate matter or a pollen grain that can bind to a specific antibody or T-cell receptor. The presence of antigens in the body may trigger an immune respon ...
to support
B cell B cells, also known as B lymphocytes, are a type of white blood cell of the lymphocyte subtype. They function in the humoral immunity component of the adaptive immune system. B cells produce antibody molecules which may be either secreted o ...
, promoting debris removal from germinal centers, and protecting against
autoimmunity In immunology, autoimmunity is the system of immune responses of an organism against its own healthy cells, tissues and other normal body constituents. Any disease resulting from this type of immune response is termed an "autoimmune disease". ...
. Disease processes that FDC may contribute include primary FDC-tumor,
chronic inflammatory Inflammation (from la, inflammatio) is part of the complex biological response of body tissues to harmful stimuli, such as pathogens, damaged cells, or irritants, and is a protective response involving immune cells, blood vessels, and molec ...
conditions,
HIV-1 The subtypes of HIV include two major types, HIV type 1 (HIV-1) and HIV type 2 (HIV-2). HIV-1 is related to viruses found in chimpanzees and gorillas living in western Africa, while HIV-2 viruses are related to viruses found in the sooty mangabey ...
infection development, and neuroinvasive
scrapie Scrapie () is a fatal, degenerative disease affecting the nervous systems of sheep and goats. It is one of several transmissible spongiform encephalopathies (TSEs), and as such it is thought to be caused by a prion. Scrapie has been known since ...
.


Location and molecular markers

Follicular DCs are a non-migratory population found in primary and secondary follicles of the B cell areas of lymph nodes, spleen, and
mucosa-associated lymphoid tissue The mucosa-associated lymphoid tissue (MALT), also called mucosa-associated lymphatic tissue, is a diffuse system of small concentrations of lymphoid tissue found in various submucosal membrane sites of the body, such as the gastrointestinal tr ...
(MALT). They form a stable network due to intercellular connections between FDCs processes and intimate interaction with follicular B cells. Follicular DCs network typically forms the center of the follicle and does not extend from the follicle to the interfollicular regions or T-cell zone. Supposedly, this separation from the sites of earliest antigen processing and capture provide a protected environment in which opsonized antigens can be displayed for a long time without being proteolyzed or removed by phagocytic cells. Follicular DCs have high expression of complement receptors CR1 and CR2 (CD 35 and CD 21 respectively) and Fc-receptor FcγRIIb (CD32). Further FDCs specific molecular markers are FDC-M1, FDC-M2 and C4. Unlike other DCs and macrophages, FDCs lack MHC class II antigen molecules and express few pattern-recognition receptors, so they have little ability to capture non-opsonized antigens.


Development

Follicular DCs develop from putative mesenchymal precursors. Severe combined immunodeficiency (SCID) mice models demonstrate that these precursors may be transmitted to recipients with bone marrow allotransplants, in which case both donors' and recipients' FDCs networks may later be found in recipients' lymphoid compartments. Interaction between FDCs precursors and lymphoid cells mediated by TNF-a and lymphotoxin (LT) is crucial for normal FDC development and maintenance. TNF-a binds on the TNFRI receptor, while LT interacts with LTβ-receptor expressed on FDC precursors. In mice lacking B cells, or with blocked TNF-a and lymphotoxin (LT) production, cells with FDC phenotype are missing.


Functions


Organizing lymphoid microarchitecture

In normal lymphoid tissue, recirculating resting B cells migrate through the FDC networks, whereas antigen-activated B cells are intercepted and undergo clonal expansion within the FDC networks, generating germinal centers (GC). FDCs are among main producers of the chemokine CXCL13 which attracts and organises lymphoid cells.


Antigen capturing, memory B-cell support

Follicular DCs receptors CR1, CR2 and FcγRIIb trap antigen opsonized by complement or antibodies. These antigens are then taken up in a non-degradative cycling endosomal compartment for later presentation to B cells. To become selected as a future memory cell, GC B cells must bind the antigen presented on FDCs, otherwise they enter
apoptosis Apoptosis (from grc, ἀπόπτωσις, apóptōsis, 'falling off') is a form of programmed cell death that occurs in multicellular organisms. Biochemical events lead to characteristic cell changes ( morphology) and death. These changes in ...
.


Debris removal

By secreting the bridging factor
MFGE8 Milk fat globule-EGF factor 8 protein (Mfge8), also known as lactadherin, is a protein that in humans is encoded by the ''MFGE8'' gene. Species distribution Mfge8 is a secreted protein found in vertebrates, including mammals as well as birds. ...
, which crosslinks apoptotic cells and phagocytes, FDCs promote selective debris removal from the GC.


Preventing autoimmunity

Factor Mfge produced in lymphoid tissues mainly by FDCs is known to enhance engulfment of apoptotic cells. Deficit of this factor in mice leads to a state resembling systemic lupus erythematosus (SLE). Furthermore, mice lacking LT or LT receptors, which are devoid of FDC, develop generalized lymphocytic infiltrates, which are suggestive of autoimmunity. These findings suggest that FDC possibly protect organism against autoimmunity by the removal of potentially self-reactive debris from germinal centres.


Interaction with B-cells

Noncognate (not antigen specific) B cells play a significant role in the transport of antigens to FDCs. They capture immune complexes in CR1/2-dependent way either directly from the lymph or from macrophages, and move to the lymphoid tissue, where they transfer complement opsonized antigen to the FDCs. FDCs, in turn, attract B cells with chemoattractant CXCL13. B cells lacking CXCR5, the receptor for CXCL13, still enter the white pulp, but are mislocalized and disorganized. To generate follicular structures, FDCs need to be stimulated by lymphotoxin (LT), a mediator produced by B cells. The stimulation of CXCR5 on B cells upregulates LT production, which leads to FDCs activation and stimulates further CXCL13 secretion, thus generating a positive feed-forward loop. This results in the formation of germinal centers (GCs), where antigen-activated B cells are trapped to undergo somatic mutation, positive and negative selection, isotype switching, and differentiation into high-affinity plasma cells and memory B cells. Adhesion between FDCs and B cells is mediated by ICAM-1 (CD54)– LFA-1 (CD11a) and VCAM–
VLA-4 Integrin α4β1 (very late antigen-4) is an integrin dimer. It is composed of CD49d (alpha 4) and CD29 (beta 1). The alpha 4 subunit is 155 kDa, and the beta 1 subunit is 150 kDa. Function The integrin VLA-4 is expressed on the cell surface ...
molecules. Activated B-cells with low affinity to antigen captured on FDCs surface as well as autoreactive B-cells undergo apoptosis, whereas B cells bound to FDCs through the antigen complex, survive due to apoptosis blockage caused by interaction with FDCs.


Diseases

Rare primary FDC-tumors have been described. These sarcomas often involve lymphoid tissues, but in a number of cases the tumor has been found in the liver, bile duct, pancreas, thyroid, nasopharynx, palatum, submucosa of the stomach or the duodenum. In a number of chronic inflammatory conditions, cells producing CXCL13 chemokine and carrying such FDCs markers as VCAM-1 and CD21, have been observed at quite unexpected sites, including synovial tissue of patients with rheumatoid arthritis (RA), salivary glands of patients with Sjögren’s syndrome, and the skin of patients with pseudo B cells lymphoma. Follicular dendritic cells participate in HIV-1 infection development both, by providing a haven for HIV-1 and by stimulating HIV-1 replication in adjacent infected monocytic cells via a juxtacrine signaling mechanism. There is also some evidence, that FDCs may promote prion replication and neuroinvasion in neuroinvasive scrapie.


See also

*


References

{{DEFAULTSORT:Follicular Dendritic Cells Lymphatic system