Femtotechnology
   HOME

TheInfoList



OR:

Femtotechnology is a hypothetical term used in reference to structuring of matter on the scale of a
femtometer The magnitudes_.html" ;"title="Magnitude_(mathematics).html" ;"title="atom.html" ;"title="helium helium_atom_and_perspective_Magnitude_(mathematics)">magnitudes_">Magnitude_(mathematics).html"_;"title="atom.html"_;"title="helium_atom">helium_a ...
, which is 10−15 m. This is a smaller scale in comparison with
nanotechnology Nanotechnology, also shortened to nanotech, is the use of matter on an atomic, molecular, and supramolecular scale for industrial purposes. The earliest, widespread description of nanotechnology referred to the particular technological goal o ...
and
picotechnology The term picotechnology is a portmanteau of picometre and technology, intended to parallel the term nanotechnology. It is a hypothetical future level of technological manipulation of matter, on the scale of trillionths of a metre or picoscale ( ...
which refer to 10−9 m and 10−12 m respectively.


Theory

Work in the femtometer range involves manipulation of excited energy states within
atomic nuclei The atomic nucleus is the small, dense region consisting of protons and neutrons at the center of an atom, discovered in 1911 by Ernest Rutherford based on the 1909 Geiger–Marsden gold foil experiment. After the discovery of the neutron ...
, specifically
nuclear isomer A nuclear isomer is a metastable state of an atomic nucleus, in which one or more nucleons (protons or neutrons) occupy excited state, higher energy levels than in the ground state of the same nucleus. "Metastable" describes nuclei whose excited ...
s, to produce metastable (or otherwise stabilized) states with unusual properties. In the extreme case, excited states of the individual
nucleon In physics and chemistry, a nucleon is either a proton or a neutron, considered in its role as a component of an atomic nucleus. The number of nucleons in a nucleus defines the atom's mass number (nucleon number). Until the 1960s, nucleons were ...
s that make up the atomic nucleus (
proton A proton is a stable subatomic particle, symbol , H+, or 1H+ with a positive electric charge of +1 ''e'' elementary charge. Its mass is slightly less than that of a neutron and 1,836 times the mass of an electron (the proton–electron mass ...
s and
neutron The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons beh ...
s) are considered, ostensibly to tailor the behavioral properties of these particles. The most advanced form of
molecular nanotechnology Molecular nanotechnology (MNT) is a technology based on the ability to build structures to complex, atomic specifications by means of mechanosynthesis. This is distinct from nanoscale materials. Based on Richard Feynman's vision of miniatur ...
is often imagined to involve self-replicating molecular machines, and there have been some speculations suggesting something similar might be possible with analogues of molecules composed of
nucleons In physics and chemistry, a nucleon is either a proton or a neutron, considered in its role as a component of an atomic nucleus. The number of nucleons in a nucleus defines the atom's mass number (nucleon number). Until the 1960s, nucleons we ...
rather than atoms. For example, the astrophysicist
Frank Drake Frank Donald Drake (May 28, 1930 – September 2, 2022) was an American astrophysicist and astrobiologist. He began his career as a radio astronomer, studying the planets of the Solar System and later pulsars. Drake expanded his interests ...
once speculated about the possibility of self-replicating organisms composed of such nuclear molecules living on the surface of a
neutron star A neutron star is the collapsed core of a massive supergiant star, which had a total mass of between 10 and 25 solar masses, possibly more if the star was especially metal-rich. Except for black holes and some hypothetical objects (e.g. w ...
, a suggestion taken up in the
science fiction Science fiction (sometimes shortened to Sci-Fi or SF) is a genre of speculative fiction which typically deals with imaginative and futuristic concepts such as advanced science and technology, space exploration, time travel, parallel unive ...
novel ''
Dragon's Egg ''Dragon's Egg'' is a 1980 hard science fiction novel by American writer Robert L. Forward. In the story, Dragon's Egg is a neutron star with a surface gravity 67 billion times that of Earth, and inhabited by cheela, intelligent creatures ...
'' by the
physicist A physicist is a scientist who specializes in the field of physics, which encompasses the interactions of matter and energy at all length and time scales in the physical universe. Physicists generally are interested in the root or ultimate caus ...
Robert Forward Robert Lull Forward (August 15, 1932 – September 21, 2002) was an American physicist and science fiction writer. His literary work was noted for its scientific credibility and use of ideas developed from his career as an aerospace engineer. He ...
. It is thought by physicists that nuclear molecules may be possible, but they would be very short-lived, and whether they could actually be made to perform complex tasks such as self-replication, or what type of technology could be used to manipulate them, is unknown.


Applications

Practical applications of femtotechnology are currently considered to be unlikely. The spacings between nuclear energy levels require equipment capable of efficiently generating and processing gamma rays, without equipment degradation. The nature of the
strong interaction The strong interaction or strong force is a fundamental interaction that confines quarks into proton, neutron, and other hadron particles. The strong interaction also binds neutrons and protons to create atomic nuclei, where it is called the n ...
is such that excited nuclear states tend to be very unstable (unlike the excited electron states in
Rydberg atom A Rydberg atom is an excited atom with one or more electrons that have a very high principal quantum number, ''n''. The higher the value of ''n'', the farther the electron is from the nucleus, on average. Rydberg atoms have a number of peculi ...
s), and there are a finite number of excited states below the nuclear binding energy, unlike the (in principle) infinite number of bound states available to an atom's electrons. Similarly, what is known about the excited states of individual nucleons seems to indicate that these do not produce behavior that in any way makes nucleons easier to use or manipulate, and indicates instead that these excited states are even less stable and fewer in number than the excited states of atomic nuclei.


In fiction

Femtotechnology plays a critical role in the 2005 science-fiction novel ''
Pushing Ice ''Pushing Ice'' is a 2005 science fiction novel by Welsh author Alastair Reynolds. According to Reynolds' Web site, the story takes place in a different universe from his Revelation Space stories. Plot summary ''Pushing Ice'' begins in the di ...
''. It also features in various stories by
Greg Egan Greg Egan (born 20 August 1961) is an Australian science fiction writer and amateur mathematician, best known for his works of hard science fiction. Egan has won multiple awards including the John W. Campbell Memorial Award, the Hugo Award, ...
such as ''Riding the Crocodile,'' where he proposes the idea of a "strong bullet" which overcomes the instability of high atomic weight femto-structures by being accelerated to near light speed, letting it travel interstellar distances before impacting a target and constructing a stable nano-scale structure as it decays.


See also

*
Attophysics Attosecond physics, also known as attophysics, or more generally attosecond science, is a branch of physics that deals with light-matter interaction phenomena wherein attosecond (10−18 s) photon pulses are used to unravel dynamical processes in ...
* Femtochemistry *
Mode-locking Mode locking is a technique in optics by which a laser can be made to produce pulses of light of extremely short duration, on the order of picoseconds (10−12 s) or femtoseconds (10−15 s). A laser operated in this way is sometimes r ...
, a laser technique producing pulses in the femtosecond range *
Ultrashort pulse In optics, an ultrashort pulse, also known as an ultrafast event, is an electromagnetic pulse whose time duration is of the order of a picosecond (10−12 second) or less. Such pulses have a broadband optical spectrum, and can be created by m ...
*FEMTO - Fluidics enhanced molecular transfer operation


References


External links


Femtotech? (Sub)Nuclear Scale Engineering and ComputationThere’s Plenty More Room at the Bottom: Beyond Nanotech to FemtotechFemtocomputing
{{Levels of technological manipulation of matter Hypothetical technology Nanotechnology