Common octopus
   HOME

TheInfoList



OR:

The common octopus (''Octopus vulgaris'') is a mollusc belonging to the class Cephalopoda. ''Octopus vulgaris'' is one of the most studied of all octopus species, and also one of the most intelligent. It ranges from the eastern Atlantic, extends from the
Mediterranean Sea The Mediterranean Sea is a sea connected to the Atlantic Ocean, surrounded by the Mediterranean Basin and almost completely enclosed by land: on the north by Western and Southern Europe and Anatolia, on the south by North Africa, and on the ...
and the southern coast of
England England is a country that is part of the United Kingdom. It shares land borders with Wales to its west and Scotland to its north. The Irish Sea lies northwest and the Celtic Sea to the southwest. It is separated from continental Europe b ...
, to the southern coast of South Africa. It also occurs off the
Azores ) , motto =( en, "Rather die free than subjected in peace") , anthem= ( en, "Anthem of the Azores") , image_map=Locator_map_of_Azores_in_EU.svg , map_alt=Location of the Azores within the European Union , map_caption=Location of the Azores wi ...
, Canary Islands, and
Cape Verde Islands , national_anthem = () , official_languages = Portuguese , national_languages = Cape Verdean Creole , capital = Praia , coordinates = , largest_city = capital , demonym ...
. The species is also common in the Western Atlantic. The common octopus hunts at dusk. Crabs, crayfish, and bivalve molluscs (two-shelled, such as cockles) are preferred, although the octopus eats almost anything it can catch. It is able to change colour to blend in with its surroundings, and is able to jump upon any unwary prey that strays across its path. Using its beak, it is able to break into the shells of shelled molluscs. Training experiments have shown the common octopus can distinguish the brightness, size, shape, and horizontal or vertical orientation of objects.


Characteristics

''Octopus vulgaris'' grows to in mantle length with arms up to long.Norman, M.D. 2000. ''Cephalopods: A World Guide''. ConchBooks. It lives for 1–2 years and may weigh up to . Mating may become
cannibalistic Cannibalism is the act of consuming another individual of the same species as food. Cannibalism is a common ecological interaction in the animal kingdom and has been recorded in more than 1,500 species. Human cannibalism is well documented, bo ...
. ''O. vulgaris'' is caught by bottom trawls on a huge scale off the northwestern coast of Africa. More than are harvested annually. The common octopus hunts at dusk. Crabs, crayfish, and bivalve molluscs (such as cockles) are preferred, although the octopus eats almost anything it can catch. It is able to change colour to blend in with its surroundings, and is able to jump upon any unwary prey that strays across its path. Using its beak, it is able to break into the shells of shelled molluscs. It also possesses venom to subdue its prey. They have evolved to have large nervous systems and brains. An individual has about 500 million neurons in its body, almost comparable to dogs. They are intelligent enough to distinguish brightness, navigate mazes, recognize individual people, learn how to unscrew a jar or raid lobster traps. They have also been observed keeping "gardens", in which they collect various marine plant life and algae, alongside collections of shells and rocks; this behavior may have inspired the 1969 Beatles title, " Octopus' Garden". ''O. vulgaris'' was the first invertebrate animal protected by the
Animals (Scientific Procedures) Act 1986 The Animals (Scientific Procedures) Act 1986, sometimes referred to as ASPA, is an Act of Parliament, Act of the Parliament of the United Kingdom (1986 c. 14) passed in 1986, which regulates the use of animals used for research in the UK. The Act ...
in the UK.


Physiology


Habitat and demands

The common octopus has world wide distribution in tropical, subtropical and temperate waters throughout the world.Belcari, P., Cuccu, D., González, M., Srairi, A. & Vidoris, P. (2002) Distribution and abundance of ''Octopus vulgaris'' Cuvier 1797, (Cephalopoda: Octopoda) in the Mediterranean Sea. Scientia Marina, 66(S2): 157–166. . They prefer the floor of relatively shallow, rocky, coastal waters, often no deeper than . Although they prefer around , salinity throughout their global habitat is found to be between roughly .Moreno, A., Lourenço, S., Pereira, J., Gaspar, M.B., Cabral, H.N., Pierce, G.J., et al. (2013). Essential habits for pre-recruit Octopus vulgaris along the Portuguese coast. Fisheries Research, 152: 74–85. . They are exposed to a wide variety of temperatures in their environments, but their preferred temperature ranges from about . In especially warm seasons, the octopus can often be found deeper than usual to escape the warmer layers of water. In moving vertically throughout the water, the octopus is subjected to various pressures and temperatures, which affect the concentration of oxygen available in the water. This can be understood through
Henry's law In physical chemistry, Henry's law is a gas law that states that the amount of dissolved gas in a liquid is directly proportional to its partial pressure above the liquid. The proportionality factor is called Henry's law constant. It was formulate ...
, which states that the concentration of a gas in a substance is proportional to pressure and solubility, which is influenced by temperature. These various discrepancies in oxygen availability introduce a requirement for regulation methods.Valverde, Jesús C. & García, Benjamin. (2005). Suitable dissolved oxygen levels for common octopus (''Octopus vulgaris'' cuvier, 1797) at different weights and temperature: analysis of respiratory behavior. Aquaculture. 244: 303–314. . Primarily, the octopus situates itself in a shelter where a minimal amount of its body is presented to the external water.Madan, J.J. & Wells, M.J. (1996)
Cutaneous respiration in ''Octopus vulgaris''
The Journal of Experimental Biology, 199: 2477–2483
When it does move, most of the time it is along the ocean or sea floor, in which case the underside of the octopus is still obscured. This crawling increases metabolic demands greatly, requiring they increase their oxygen intake by roughly 2.4 times the amount required for a resting octopus.Katsanevakis, S., Stephanopoulou, S., Miliou, H., Moraitou-Apostolopoulou, M. & Verriopoulos, G. (2005). Oxygen consumption and ammonia excretion of Octopus vulgaris (Cephalopoda) in relation to body mass and temperature. Marine Biology, 146, 725–732. . This increased demand is met by an increase in the stroke volume of the octopus' heart.Wells, M.J., Duthie, G.G., Houlihan, D.F., Smith, P.J.S. & Wells, J. (1987). Blood flow and pressure changes in exercising octopuses (Octopus vulgaris). The Journal of Experimental Biology, 131, 175–187 The octopus does sometimes swim throughout the water, exposing itself completely. In doing so, it uses a jet mechanism that involves creating a much higher pressure in its
mantle cavity The mantle (also known by the Latin word pallium meaning mantle, robe or cloak, adjective pallial) is a significant part of the anatomy of molluscs: it is the dorsal body wall which covers the visceral mass and usually protrudes in the form of ...
that allows it to propel itself through the water. As the common octopus' heart and gills are located within its mantle, this high pressure also constricts and puts constraints on the various vessels that are returning blood to the heart. Ultimately, this creates circulation issues and is not a sustainable form of transportation, as the octopus cannot attain an oxygen intake that can balance the metabolic demands of maximum exertion.


Respiration

The octopus uses
gill A gill () is a respiratory organ that many aquatic organisms use to extract dissolved oxygen from water and to excrete carbon dioxide. The gills of some species, such as hermit crabs, have adapted to allow respiration on land provided they are ...
s as its respiratory surface. The gill is composed of branchial ganglia and a series of folded
lamellae Lamella (plural lamellae) means a small plate or flake in Latin, and in English may refer to: Biology * Lamella (mycology), a papery rib beneath a mushroom cap * Lamella (botany) * Lamella (surface anatomy), a plate-like structure in an animal * ...
. Primary lamellae extend out to form demibranches and are further folded to form the secondary free folded lamellae, which are only attached at their tops and bottoms.Young, Richard E. & Vecchione, Michael. (2002). Evolution of the gills in the octopodiformes. Bulletin of marine science. 71(2): 1003–1017 The tertiary lamellae are formed by folding the secondary lamellae in a fan-like shape. Water moves slowly in one direction over the gills and lamellae, into the mantle cavity and out of the octopus' funnel.Wells, M.J., & Wells, J. (1995). The control of ventilatory and cardiac responses to changes in ambient oxygen tension and oxygen demand in Octopus. The Journal of Experimental Biology, 198, 1717–1727 The structure of the octopus' gills allows for a high amount of oxygen uptake; up to 65% in water at . The thin skin of the octopus accounts for a large portion of
in-vitro ''In vitro'' (meaning in glass, or ''in the glass'') studies are performed with microorganisms, cells, or biological molecules outside their normal biological context. Colloquially called " test-tube experiments", these studies in biology and ...
oxygen uptake; estimates suggest around 41% of all oxygen absorption is through the skin when at rest. This number is affected by the activity of the animal – the oxygen uptake increases when the octopus is exercising due to its entire body being constantly exposed to water, but the total amount of oxygen absorption through skin is actually decreased to 33% as a result of the metabolic cost of swimming. When the animal is curled up after eating, its absorption through its skin can drop to 3% of its total oxygen uptake. The octopus' respiratory pigment,
hemocyanin Hemocyanins (also spelled haemocyanins and abbreviated Hc) are proteins that transport oxygen throughout the bodies of some invertebrate animals. These metalloproteins contain two copper atoms that reversibly bind a single oxygen molecule (O2) ...
, also assists in increasing oxygen uptake. Octopuses can maintain a constant oxygen uptake even when oxygen concentrations in the water decrease to around or 31.6% saturation (standard deviation 8.3%). If oxygen saturation in sea water drops to about 1–10% it can be fatal for ''Octopus vulgaris'' depending on the weight of the animal and the water temperature. Ventilation may increase to pump more water carrying oxygen across the gills but due to receptors found on the gills the energy use and oxygen uptake remains at a stable rate. The high percent of oxygen extraction allows for energy saving and benefits for living in an area of low oxygen concentration. Water is pumped into the mantle cavity of the octopus, where it comes into contact with the internal gills. The water has a high concentration of oxygen compared to the blood returning from the veins, so oxygen diffuses into the blood. The tissues and muscles of the octopus use oxygen and release carbon dioxide when breaking down glucose in the
Krebs cycle The citric acid cycle (CAC)—also known as the Krebs cycle or the TCA cycle (tricarboxylic acid cycle)—is a series of chemical reactions to release stored energy through the oxidation of acetyl-CoA derived from carbohydrates, fats, and protein ...
. The carbon dioxide then dissolves into the blood or combines with water to form carbonic acid, which decreases blood pH. The Bohr effect explains why oxygen concentrations are lower in venous blood than arterial blood and why oxygen diffuses into the bloodstream. The rate of diffusion is affected by the distance the oxygen has to travel from the water to the bloodstream as indicated by Fick's laws of diffusion. Fick's laws explain why the gills of the octopus contain many small folds that are highly vascularised. They increase surface area, thus also increase the rate of
diffusion Diffusion is the net movement of anything (for example, atoms, ions, molecules, energy) generally from a region of higher concentration to a region of lower concentration. Diffusion is driven by a gradient in Gibbs free energy or chemica ...
. The capillaries that line the folds of the gill epithelium have a very thin tissue barrier (10 µm), which allows for fast, easy diffusion of the oxygen into the blood. In situations where the partial pressure of oxygen in the water is low, diffusion of oxygen into the blood is reduced, Henry's law can explain this phenomenon. The law states that at equilibrium, the partial pressure of oxygen in water will be equal to that in air; but the concentrations will differ due to the differing solubility. This law explains why ''O. vulgaris'' has to alter the amount of water cycled through its mantle cavity as the oxygen concentration in water changes. The gills are in direct contact with water – carrying more oxygen than the blood – that has been brought into the mantle cavity of the octopus. Gill capillaries are quite small and abundant, which creates an increased surface area that water can come into contact with, thus resulting in enhanced diffusion of oxygen into the blood. Some evidence indicates that lamellae and vessels within the lamellae on the gills contract to aid in propelling blood through the capillaries.


Circulation

The octopus has three hearts, one main two-chambered heart charged with sending oxygenated blood to the body and two smaller branchial hearts, one next to each set of gills. The circulatory circuit sends oxygenated blood from the gills to the atrium of the systemic heart, then to its ventricle which pumps this blood to the rest of the body. Deoxygenated blood from the body goes to the branchial hearts which pump the blood across the gills to oxygenate it, and then the blood flows back to the systemic atrium for the process to begin again.Wells, M.J. (1980)
Nervous control of the heartbeat in Octopus
The Journal of Experimental Biology, 85, 111–128. .
Three aortae leave the systemic heart, two minor ones (the abdominal aorta and the gonadal aorta) and one major one, the dorsal aorta which services most of the body. The octopus also has large blood sinuses around its gut and behind its eyes that function as reserves in times of physiologic stress.O'Dor, R.K., & Wells, M.J. (1984). Circulation time, blood reserves and extracellular space in a cephalopod. The Journal of Experimental Biology, 113, 461–464. . The octopus' heart rate does not change significantly with exercise, though temporary cardiac arrest of the systemic heart can be induced by oxygen debt, almost any sudden stimulus, or mantle pressure during jet propulsion.Wells, M.J. (1979)
The heartbeat of ''Octopus vulgaris''
The Journal of Experimental Biology, 78, 87–104
Its only compensation for exertion is through an increase in stroke volume of up to three times by the systemic heart, which means it suffers an oxygen debt with almost any rapid movement.Shadwick, R.E., & Nilsson E.K.. (1990)
The importance of vascular elasticity in the circulatory system of the cephalopod ''Octopus vulgaris''
The Journal of Experimental Biology, 152, 471–484
The octopus is, however, able to control how much oxygen it pulls out of the water with each breath using receptors on its gills, allowing it to keep its oxygen uptake constant over a range of oxygen pressures in the surrounding water. The three hearts are also temperature and oxygen dependent and the beat rhythm of the three hearts are generally in phase with the two branchial hearts beating together followed by the systemic heart. The
Frank–Starling law The Frank–Starling law of the heart (also known as Starling's law and the Frank–Starling mechanism) represents the relationship between stroke volume and end diastolic volume.Widmaier, E. P., Hershel, R., & Strang, K. T. (2016).''Vander's Hum ...
also contributes to overall heart function, through
contractility Contractility refers to the ability for self-contraction, especially of the muscles or similar active biological tissue *Contractile ring in cytokinesis *Contractile vacuole *Muscle contraction **Myocardial contractility *See contractile cell for ...
and stroke volume, since the total volume of blood vessels must be maintained, and must be kept relatively constant within the system for the heart to function properly.Hill, Richard W., Gordon A. Wyse, and Margaret Anderson. ''Animal Physiology''. 3rd ed. Sunderland, MA: (635–636, 654–657, 671–672) Sinauer Associates, 2012. Print The blood of the octopus is composed of copper-rich hemocyanin, which is less efficient than the iron-rich hemoglobin of vertebrates, thus does not increase oxygen affinity to the same degree. Oxygenated hemocyanin in the arteries binds to , which is then released when the blood in the veins is deoxygenated. The release of into the blood causes it to acidify by forming carbonic acid. The Bohr effect explains that carbon dioxide concentrations affect the blood pH and the release or intake of oxygen. The Krebs cycle uses the oxygen from the blood to break down glucose in active tissues or muscles and releases carbon dioxide as a waste product, which leads to more oxygen being released. Oxygen released into the tissues or muscles creates deoxygenated blood, which returns to the gills in veins. The two brachial hearts of the octopus pump blood from the veins through the gill capillaries. The newly oxygenated blood drains from the gill capillaries into the systemic heart, where it is then pumped back throughout the body. Blood volume in the octopus' body is about 3.5% of its body weight but the blood's oxygen-carrying capacity is only about 4 volume percent. This contributes to their susceptibility to the oxygen debt mentioned before. Shadwick and Nilsson concluded that the octopus circulatory system is "fundamentally unsuitable for high physiologic performance". Since the binding agent is found within the plasma and not the blood cells, a limit exists to the oxygen uptake that the octopus can experience. If it were to increase the hemocyanin within its blood stream, the fluid would become too
viscous The viscosity of a fluid is a measure of its resistance to deformation at a given rate. For liquids, it corresponds to the informal concept of "thickness": for example, syrup has a higher viscosity than water. Viscosity quantifies the inte ...
for the
myogenic The myogenic mechanism is how arteries and arterioles react to an increase or decrease of blood pressure to keep the blood flow constant within the blood vessel. Myogenic response refers to a contraction initiated by the myocyte itself instead of ...
hearts to pump. Poiseuille's law explains the rate of flow of the bulk fluid throughout the entire circulatory system through the differences of blood pressure and vascular resistance. Like those of vertebrates, octopus blood vessels are very elastic, with a resilience of 70% at physiologic pressures. They are primarily made of an elastic fibre called octopus arterial elastomer, with stiffer collagen fibres recruited at high pressure to help the vessel maintain its shape without over-stretching. Shadwick and Nilsson theorized that all octopus blood vessels may use smooth-muscle contractions to help move blood through the body, which would make sense in the context of them living under water with the attendant pressure. The elasticity and contractile nature of the octopus aorta serves to smooth out the pulsing nature of blood flow from the heart as the pulses travel the length of the vessel, while the vena cava serves in an energy-storage capacity. Stroke volume of the systemic heart changes inversely with the difference between the input blood pressure through the
vena cava In anatomy, the venae cavae (; singular: vena cava ; ) are two large veins (great vessels) that return deoxygenated blood from the body into the heart. In humans they are the superior vena cava and the inferior vena cava, and both empty into the ...
and the output back pressure through the
aorta The aorta ( ) is the main and largest artery in the human body, originating from the left ventricle of the heart and extending down to the abdomen, where it splits into two smaller arteries (the common iliac arteries). The aorta distributes o ...
.


Osmoregulation

The
hemolymph Hemolymph, or haemolymph, is a fluid, analogous to the blood in vertebrates, that circulates in the interior of the arthropod (invertebrate) body, remaining in direct contact with the animal's tissues. It is composed of a fluid plasma in which ...
,
pericardial fluid Pericardial fluid is the serous fluid secreted by the serous layer of the pericardium into the pericardial cavity. The pericardium consists of two layers, an outer fibrous layer and the inner serous layer. This serous layer has two membranes which ...
and
urine Urine is a liquid by-product of metabolism in humans and in many other animals. Urine flows from the kidneys through the ureters to the urinary bladder. Urination results in urine being excreted from the body through the urethra. Cellular ...
of cephalopods, including the common octopus, are all isosmotic with each other, as well as with the surrounding sea water.Wells, M.J. (1978). ''Octopus: Physiology and behaviour of an advanced invertebrate''. Cambridge: University Printing House. It has been suggested that cephalopods do not osmoregulate, which would indicate that they are conformers. This means that they adapt to match the osmotic pressure of their environment, and because there is no osmotic gradient, there is no net movement of water from the organism to the seawater, or from the seawater into the organism. Octopuses have an average minimum salinity requirement of , and that any disturbance introducing significant amounts of fresh water into their environment can prove fatal. In terms of
ions An ion () is an atom or molecule with a net electrical charge. The charge of an electron is considered to be negative by convention and this charge is equal and opposite to the charge of a proton, which is considered to be positive by conven ...
, however, a discrepancy does seem to occur between ionic concentrations found in the seawater and those found within cephalopods. In general, they seem to maintain hypoionic concentrations of sodium, calcium, and chloride in contrast to the salt water. Sulfate and potassium exist in a hypoionic state, as well, with the exception of the excretory systems of cephalopods, where the urine is hyperionic. These ions are free to diffuse, and because they exist in hypoionic concentrations within the organism, they would be moving into the organism from the seawater. The fact that the organism can maintain hypoionic concentrations suggests not only that a form of ionic regulation exists within cephalopods, but also that they also actively excrete certain ions such as potassium and sulfate to maintain
homeostasis In biology, homeostasis (British also homoeostasis) (/hɒmɪə(ʊ)ˈsteɪsɪs/) is the state of steady internal, physical, and chemical conditions maintained by living systems. This is the condition of optimal functioning for the organism and ...
. ''O. vulgaris'' has a mollusc-style
kidney The kidneys are two reddish-brown bean-shaped organs found in vertebrates. They are located on the left and right in the retroperitoneal space, and in adult humans are about in length. They receive blood from the paired renal arteries; blo ...
system, which is very different from mammals. The system is built around an appendage of each branchial heart, which is essentially an extension of its
pericardium The pericardium, also called pericardial sac, is a double-walled sac containing the heart and the roots of the great vessels. It has two layers, an outer layer made of strong connective tissue (fibrous pericardium), and an inner layer made o ...
. These long, ciliated ducts filter the blood into a pair of kidney sacs, while actively reabsorbing
glucose Glucose is a simple sugar with the molecular formula . Glucose is overall the most abundant monosaccharide, a subcategory of carbohydrates. Glucose is mainly made by plants and most algae during photosynthesis from water and carbon dioxide, u ...
and
amino acid Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although hundreds of amino acids exist in nature, by far the most important are the alpha-amino acids, which comprise proteins. Only 22 alpha a ...
s into the bloodstream. The renal sacs actively adjust the ionic concentrations of the urine, and actively add
nitrogenous Nitrogen is the chemical element with the symbol N and atomic number 7. Nitrogen is a nonmetal and the lightest member of group 15 of the periodic table, often called the pnictogens. It is a common element in the universe, estimated at seventh ...
compounds and other metabolic waste products to the urine. Once filtration and reabsorption are complete, the urine is emptied into ''O. vulgaris mantle cavity via a pair of renal papillae, one from each renal sac. Temperature and body size directly affect the oxygen consumption of ''O. vulgaris'', which alters the rate of metabolism. When oxygen consumption decreases, the amount of
ammonia Ammonia is an inorganic compound of nitrogen and hydrogen with the formula . A stable binary hydride, and the simplest pnictogen hydride, ammonia is a colourless gas with a distinct pungent smell. Biologically, it is a common nitrogenous wa ...
excretion also decreases due to the slowed metabolic rate. ''O. vulgaris'' has four different fluids found within its body: blood, pericardial fluid, urine, and renal fluid. The urine and renal fluid have high concentrations of potassium and sulphate, but low concentrations of chloride. The urine has low calcium concentrations, which suggests it has been actively removed. The renal fluid has similar calcium concentrations to the blood. Chloride concentrations are high in the blood, while sodium varies. The pericardial fluid has concentrations of sodium, potassium, chlorine and calcium similar to that of the salt water supporting the idea that ''O. vulgaris'' does not osmoregulate, but conforms. However, it has lower sulphate concentrations. The pericardial duct contains an ultrafiltrate of the blood known as the pericardial fluid, and the rate of filtration is partly controlled by the muscle- and nerve-rich branchial hearts. The renal appendages move nitrogenous and other waste products from the blood to the renal sacs, but do not add volume. The renal fluid has a higher concentration of ammonia than the urine or the blood, thus the renal sacs are kept acidic to help draw the ammonia from the renal appendages. The ammonia diffuses down its concentration gradient into the urine or into the blood, where it gets pumped through the branchial hearts and diffuses out the gills. The excretion of ammonia by ''O. vulgaris'' makes them
ammonotelic Metabolic wastes or excrements are Chemical substance, substances left over from metabolism, metabolic processes (such as cellular respiration) which cannot be used by the organism (they are surplus or toxicity, toxic), and must therefore be excr ...
organisms. Aside from ammonia, a few other nitrogenous waste products have been found to be excreted by ''O. vulgaris'' such as
urea Urea, also known as carbamide, is an organic compound with chemical formula . This amide has two amino groups (–) joined by a carbonyl functional group (–C(=O)–). It is thus the simplest amide of carbamic acid. Urea serves an important ...
,
uric acid Uric acid is a heterocyclic compound of carbon, nitrogen, oxygen, and hydrogen with the formula C5H4N4O3. It forms ions and salts known as urates and acid urates, such as ammonium acid urate. Uric acid is a product of the metabolic breakdown ...
,
purines Purine is a heterocyclic aromatic organic compound that consists of two rings (pyrimidine and imidazole) fused together. It is water-soluble. Purine also gives its name to the wider class of molecules, purines, which include substituted purines a ...
, and some free amino acids, but in smaller amounts. Within the renal sacs, two recognized and specific cells are responsible for the regulation of ions. The two kinds of cells are the lacuna-forming cells and the
epithelial cells Epithelium or epithelial tissue is one of the four basic types of animal tissue, along with connective tissue, muscle tissue and nervous tissue. It is a thin, continuous, protective layer of compactly packed cells with a little intercell ...
that are typical to kidney tubules. The epithelia cells are
ciliated The cilium, plural cilia (), is a membrane-bound organelle found on most types of eukaryotic cell, and certain microorganisms known as ciliates. Cilia are absent in bacteria and archaea. The cilium has the shape of a slender threadlike project ...
, cylindrical, and polarized with three distinct regions. These three regions are apical, middle cytoplasmic, and basal lamina. The middle cytoplasmic region is the most active of the three due to the concentration of multiple organelles within, such as mitochondria and smooth and rough endoplasmic reticulum, among others. The increase of activity is due to the interlocking labyrinth of the basal lamina creating a crosscurrent activity similar to the mitochondrial-rich cells found in
teleost Teleostei (; Greek ''teleios'' "complete" + ''osteon'' "bone"), members of which are known as teleosts ), is, by far, the largest infraclass in the class Actinopterygii, the ray-finned fishes, containing 96% of all extant species of fish. Tele ...
marine fish. The lacuna-forming cells are characterized by contact to the basal lamina, but not reaching the apical rim of the associated epithelial cells and are located in the branchial heart epithelium. The shape varies widely and are occasionally more electron-dense than the epithelial cells, seen as a "diffused kidney" regulating ion concentrations.Witmer, A. (1975). The fine structure of the renopericardial cavity of the cephalopod ocotopus dofleine martini. Journal of Ultrastructure Research, (53), 29–36. One adaptation that ''O. vulgaris'' has is some direct control over its kidneys. It is able to switch at will between the right or left kidney doing the bulk of the filtration, and can also regulate the filtration rate so that the rate does not increase when the animal's blood pressure goes up due to stress or exercise. Some species of octopuses, including ''O. vulgaris'', also have a duct that runs from the gonadal space into the branchial pericardium. Wells theorized that this duct, which is highly vascularized and innervated, may enable the reabsorption of important metabolites from the ovisac fluid of pregnant females by directing this fluid into the renal appendages.


Thermoregulation

As an oceanic organism, ''O. vulgaris'' experiences a temperature variance due to many factors, such as season, geographical location, and depth.Hill, R.W., Wyse, G.A., & Anderson, M. (2012). Animal Physiology. Sunderland: SinauerAssociates pp. 164–165. For example, octopuses living around
Naples Naples (; it, Napoli ; nap, Napule ), from grc, Νεάπολις, Neápolis, lit=new city. is the regional capital of Campania and the third-largest city of Italy, after Rome and Milan, with a population of 909,048 within the city's adminis ...
may experience a temperature of in the summer and in the winter. These changes would occur quite gradually, however, and thus would not require any extreme regulation. The common octopus is a
poikilothermic A poikilotherm () is an animal whose internal temperature varies considerably. Poikilotherms have to survive and adapt to environmental stress. One of the most important stressors is temperature change, which can lead to alterations in membrane ...
, eurythermic
ectotherm An ectotherm (from the Greek () "outside" and () "heat") is an organism in which internal physiological sources of heat are of relatively small or of quite negligible importance in controlling body temperature.Davenport, John. Animal Life ...
, meaning that it conforms to the ambient temperature.Katsanevakis, S., Protopapas, N., Miliou, H. & Verriopoulos, G. (2005). Effect of temperature on specific dynamic action in the common octopus, Octopus vulgaris (Cephalopoda). Marine Biology, 146, 733–738. This implies that no real temperature gradient is seen between the organism and its environment, and the two are quickly equalized. If the octopus swims to a warmer locale, it gains heat from the surrounding water, and if it swims to colder surroundings, it loses heat in a similar fashion. ''O. vulgaris'' can apply behavioral changes to manage wide varieties of environmental temperatures. Respiration rate in octopods is temperature-sensitive – respiration increases with temperature. Its oxygen consumption increases when in water temperatures between , reaches a maximum at , and then begins to drop at . The optimum temperature for metabolism and oxygen consumption is between . Variations in temperature can also induce a change in hemolymph protein levels along oxygen consumption. As temperature increases, protein concentrations increase in order to accommodate the temperature. Also the cooperativity of hemocyanin increases, but the affinity decreases.Zeilinski S., et al. 2001. Temperature effects on hemocyanin oxygen binding in an antarctic cephalopod. The Biological Bulletin. 200(1): 67–76. . . Conversely, a decrease in temperature results in a decrease in
respiratory pigment A respiratory pigment is a metalloprotein that serves a variety of important functions, its main being O2 transport. Other functions performed include O2 storage, CO2 transport, and transportation of substances other than respiratory gases. There ar ...
cooperativity and increase in affinity. The slight rise in P50 that occurs with temperature change allows oxygen pressure to remain high in the
capillaries A capillary is a small blood vessel from 5 to 10 micrometres (μm) in diameter. Capillaries are composed of only the tunica intima, consisting of a thin wall of simple squamous endothelial cells. They are the smallest blood vessels in the body: ...
, allowing for elevated diffusion of oxygen into the mitochondria during periods of high oxygen consumption. The increase in temperature results in higher
enzyme activity Enzyme assays are laboratory methods for measuring enzymatic activity. They are vital for the study of enzyme kinetics and enzyme inhibition. Enzyme units The quantity or concentration of an enzyme can be expressed in molar amounts, as with a ...
, yet the decrease in hemocyanin affinity allows enzyme activity to remain constant and maintain homeostasis. The highest hemolymph protein concentrations are seen at and then drop at temperatures above this. Oxygen affinity in the blood decreases by at a pH of 7.4. The octopod's thermal tolerance is limited by its ability to consume oxygen, and when it fails to provide enough oxygen to circulate at extreme temperatures the effects can be fatal. ''O. vulgaris'' has a pH-independent venous reserve that represents the amount of oxygen that remains bound to the respiratory pigment at constant pressure of oxygen. This reserve allows the octopus to tolerate a wide range of pH related to temperature. As a temperature conformer,Noyola, J., Caamal-Monsreal, C., Díaz, F., Re, D., Sánchez, A., & Rosas, C. (2013). Thermopreference, tolerance and metabolic rate of early stages juvenile Octopus maya acclimated to different temperatures. Journal of Thermal Biology, 38, 14–19. ''O. vulgaris'' does not have any specific organ or structure dedicated to heat production or heat exchange. Like all animals, they produce heat as a result of ordinary metabolic processes such as digestion of food, but take no special means to keep their body temperature within a certain range. Their preferred temperature directly reflects the temperature to which they are acclimated. They have an acceptable ambient temperature range of , with their optimum for maximum metabolic efficiency being about . As ectothermal animals, common octopuses are highly influenced by changes in temperature. All species have a thermal preference where they can function at their
basal metabolic rate Basal metabolic rate (BMR) is the rate of energy expenditure per unit time by endothermic animals at rest. It is reported in energy units per unit time ranging from watt (joule/second) to ml O2/min or joule per hour per kg body mass J/(h·kg). Pro ...
. The low metabolic rate allows for rapid growth, thus these cephalopods mate as the water becomes closest to the preferential zone. Increasing temperatures cause an increase in oxygen consumption by ''O. vulgaris''. Increased oxygen consumption can be directly related to the metabolic rate, because the breakdown of molecules such as
glucose Glucose is a simple sugar with the molecular formula . Glucose is overall the most abundant monosaccharide, a subcategory of carbohydrates. Glucose is mainly made by plants and most algae during photosynthesis from water and carbon dioxide, u ...
requires an input of oxygen, as explained by the Krebs cycle. The amount of ammonia excreted conversely decreases with increasing temperature. The decrease in
ammonia Ammonia is an inorganic compound of nitrogen and hydrogen with the formula . A stable binary hydride, and the simplest pnictogen hydride, ammonia is a colourless gas with a distinct pungent smell. Biologically, it is a common nitrogenous wa ...
being excreted is also related to the metabolism of the octopus due to its need to spend more energy as the temperature increases. ''Octopus vulgaris'' will reduce the amount of ammonia excreted in order to use the excess solutes that it would have otherwise excreted due to the increased metabolic rate. Octopuses do not regulate their internal temperatures until it reaches a threshold where they must begin to regulate to prevent death. The increase in metabolic rate shown with increasing temperatures is likely due to the octopus swimming to shallower or deeper depths to stay within its preferential temperature zone.


See also

*''
My Octopus Teacher ''My Octopus Teacher'' is a 2020 Netflix Original documentary film directed by Pippa Ehrlich and James Reed, which documents a year spent by filmmaker Craig Foster forging a relationship with a wild common octopus in a South African kelp forest ...
'' (2020 documentary film)


References


External links

* * {{Taxonbar, from=Q651361 Octopuses Molluscs of the Atlantic Ocean Molluscs of the Mediterranean Sea Marine molluscs of Africa Marine molluscs of Europe Fauna of Macaronesia Fauna of Gough Island Cephalopods described in 1797 Taxa named by Georges Cuvier Cephalopods of Europe