In chemistry, a colloid is a phase separated mixture in which one substance of microscopically dispersed insoluble or soluble particles is suspended throughout another substance. Sometimes the dispersed substance alone is called the colloid;[1] the term colloidal suspension refers unambiguously to the overall mixture (although a narrower sense of the word suspension is distinguished from colloids by larger particle size). Unlike a solution, whose solute and solvent constitute only one phase, a colloid has a dispersed phase (the suspended particles) and a continuous phase (the medium of suspension) that arise by phase separation. Typically, colloids do not completely settle or take a long time to settle completely into two separated layers.
The dispersed-phase particles have a diameter between approximately 1 and 1000 nanometers.[2] Such particles are normally easily visible in an optical microscope, although at the smaller size range (r < 250 nm), an ultramicroscope or an electron microscope may be required. Homogeneous mixtures with a dispersed phase in this size range may be called colloidal aerosols, colloidal emulsions, colloidal foams, colloidal dispersions, or hydrosols. The dispersed-phase particles or droplets are affected largely by the surface chemistry present in the colloid.
Some colloids are translucent because of the Tyndall effect, which is the scattering of light by particles in the colloid. Other colloids may be opaque or have a slight color. The cytoplasm of living cells is an example of a colloid, containing many types of biomolecular condensate.
Colloidal suspensions are the subject of interface and colloid science. This field of study was introduced in 1845 by Italian chemist Francesco Selmi[3] and further investigated since 1861 by Scottish scientist Thomas Graham.[4]
The dispersed-phase particles have a diameter between approximately 1 and 1000 nanometers.[2] Such particles are normally easily visible in an optical microscope, although at the smaller size range (r < 250 nm), an ultramicroscope or an electron microscope may be required. Homogeneous mixtures with a dispersed phase in this size range may be called colloidal aerosols, colloidal emulsions, colloidal foams, colloidal dispersions, or hydrosols. The dispersed-phase particles or droplets are affected largely by the surface chemistry present in the col
The dispersed-phase particles have a diameter between approximately 1 and 1000 nanometers.[2] Such particles are normally easily visible in an optical microscope, although at the smaller size range (r < 250 nm), an ultramicroscope or an electron microscope may be required. Homogeneous mixtures with a dispersed phase in this size range may be called colloidal aerosols, colloidal emulsions, colloidal foams, colloidal dispersions, or hydrosols. The dispersed-phase particles or droplets are affected largely by the surface chemistry present in the colloid.
Some colloids are translucent because of the Tyndall effect, which is the scattering of light by particles in the colloid. Other colloids may be opaque or have a slight color. The cytoplasm of living cells is an example of a colloid, containing many types of biomolecular condensate.
Colloidal suspensions are the subject of interface and colloid science. This field of study was introduced in 1845 by Italian chemist Francesco Selmi[3] and further investigated since 1861 by Scottish scientist Thomas Graham.[4]
Because the size of the dispersed phase may be difficult to measure, and because colloids have the appearance of solutions, colloids are sometimes identified and characterized by their physico-chemical and transport properties. For example, if a colloid consists of a solid phase dispersed in a liquid, the solid particles will not diffuse through a membrane, whereas with a true solution the dissolved ions or molecules will diffuse through a membrane. Because of the size exclusion, the colloidal particles are unable to pass through the pores of an ultrafiltration membrane with a size smaller than their own dimension. The smaller the size of the pore of the ultrafiltration membrane, the lower the concentration of the dispersed colloidal particles remaining in the ultrafiltered liquid. The measured value of the concentration of a truly dissolved species will thus depend on the experimental conditions applied to separate it from the colloidal particles also dispersed in the liquid. This is particularly important for solubility studies of readily hydrolyzed species such as Al, Eu, Am, Cm, or organic matter complexing these species. Colloids can be classified as follows:
Based on the nature of interaction between the dispersed phase and the dispersion medium, colloids can be classified as: Hydrophilic colloids: The colloid particles are attracted toward water. They are also called reversible sols. Hydrophobic colloids: These are opposite in nature to hydrophilic colloids. The colloid particles are repelled by water. They are also called irreversible sols.
In some cases, a colloid suspension can be considered a semi-homogeneous mixture. This is because the distinction between "dissolved" solution and "particulate" suspension matter can be sometimes a matter of approach, which affects whether or not it is homogeneous or heterogeneous.
The following forces play an important role in the interaction of colloid particles:[10][11][12]
Based on the nature of interaction between the dispersed phase and the dispersion medium, colloids can be classified as: Hydrophilic colloids: The colloid particles are attracted toward water. They are also called reversible sols. Hydrophobic colloids: These are opposite in nature to hydrophilic colloids. The colloid particles are repelled by water. They are also called irreversible sols.
In some cases, a colloid suspension can be considered a semi-homogeneous mixture. This is because the distinction between "dissolved" solution and "particulate" suspension matter can be sometimes a matter of approach, which affects whether or not it is homogeneous or heterogeneous.
The following forces play an important role in the interaction of colloid particles:[10][11][12]
There are two principal ways to prepare colloids:[13]
In some cases, a colloid suspension can be considered a semi-homogeneous mixture. This is because the distinction between "dissolved" solution and "particulate" suspension matter can be sometimes a matter of approach, which affects whether or not it is homogeneous or heterogeneous.
The following forces play an important role in the interaction of colloid particles:[10][11][12]
There are two principal ways to prepare colloids:[13]
The stability of a colloidal system is defined by particles remaining suspended in solution at equilibrium.
Stability is hindered by aggregation and sedimentation phenomena, which are driven by the colloid's tendency to reduce surface energy. Reducing the interfacial tension will stabilize the colloidal system by reducing this driving force.
Stability is hindered by aggregation and sedimentation phenomena, which are driven by the colloid's tendency to reduce surface energy. Reducing the interfacial tension will stabilize the colloidal system by reducing this driving force.
Aggregation is due to the sum of the interaction forces between particles.[14]Stability is hindered by aggregation and sedimentation phenomena, which are driven by the colloid's tendency to reduce surface energy. Reducing the interfacial tension will stabilize the colloidal system by reducing this driving force.
Aggregation is due to the sum of the interaction forces between particles.[14][15] If attractive forces (such as van der Waals forces) prevail over the repulsive ones (such as the electrostatic ones) particles aggregate in clusters.
Electrostatic stabilization and steric stabilization are the two main mechanisms for stabilization against aggregation.
Electrostatic stabilization and steric stabilization are the two main mechanisms for stabilization against aggregation.
A combination of the two mechanisms is also possible (electrosteric stabilization). All the above-mentioned mechanisms for minimizing particle aggregation rely on the enhancement of the repulsive interaction forces.
Electrostatic and steric stabilization do not directly address the sedimentation/floating problem.
Particle sedimentation (and also floating, although this phenomenon is less common) arises from a difference in the density of the dispersed and of the continuous phase. The higher the difference in densities, the faster the particle settling.
The method consists in adding to the colloidal suspension a polymer able to form a gel network and characterized by shear thinning properties. Examples of such substances are xanthan and Electrostatic and steric stabilization do not directly address the sedimentation/floating problem.
Particle sedimentation (and also floating, although this phenomenon is less common) arises from a difference in the density of the dispersed and of the continuous phase. The higher the difference in densities, the faster the particle settling.
The method consists in adding to the colloidal suspension a polymer able to form a gel network and characterized by shear thinning properties. Examples of such substances are xanthan and guar gum.
The rheological shear thinning properties find beneficial in the preparation of the suspensions and in their use, as the reduced viscosity at high shear rates facilitates deagglomeration, mixing and in general the flow of the suspensions.
Unstable colloidal dispersions can form either flocs or aggregates as the particles assemble due to interparticle attractions. Flocs are loose and flexible conglomerates of the particles, whereas aggregates are compact and rigid entities. There are methods that distinguish between flocculation and aggregation, such as Flocs are loose and flexible conglomerates of the particles, whereas aggregates are compact and rigid entities. There are methods that distinguish between flocculation and aggregation, such as acoustic spectroscopy.[18] Destabilization can be accomplished by different methods:
Unstable colloidal suspensions of low-volume fraction form clustered liquid suspensions, wherein individual clusters of particles fall to the bottom of the suspension (or float to the top if the particles are less dense than the suspending medium) once the clusters are of sufficient size for the Brownian forces that work to keep the particles in suspension to be overcome by gravitational forces. However, colloidal suspensions of higher-volume fraction form colloidal gels with viscoelastic properties. Viscoelastic colloidal gels, such as bentonite and toothpaste, flow like liquids under shear, but maintain their shape when shear is removed. It is for this reason that toothpaste can be squeezed from a toothpaste tube, but stays on the toothbrush after it is applied.
Multiple light scattering coupled with vertical scanning is the most widely used technique to monitor the dispersion state of a product, hence identifying and quantifying destabilisation phenomena.[19][20]Multiple light scattering coupled with vertical scanning is the most widely used technique to monitor the dispersion state of a product, hence identifying and quantifying destabilisation phenomena.[19][20][21][22] It works on concentrated dispersions without dilution. When light is sent through the sample, it is backscattered by the particles / droplets. The backscattering intensity is directly proportional to the size and volume fraction of the dispersed phase. Therefore, local changes in concentration (e.g.Creaming and Sedimentation) and global changes in size (e.g. flocculation, coalescence) are detected and monitored.
The kinetic process of destabilisation can be rather long (up to several months or even years for some products) and it is often required for the formulator to use further accelerating methods in order to reach reasonable development time for new product design. Thermal methods are the most commonly used and consists in increasing temperature to accelerate destabilisation (below critical temperatures of phase inversion or chemical degradation). Temperature affects not only the viscosity, but also interfacial tension in the case of non-ionic surf
The kinetic process of destabilisation can be rather long (up to several months or even years for some products) and it is often required for the formulator to use further accelerating methods in order to reach reasonable development time for new product design. Thermal methods are the most commonly used and consists in increasing temperature to accelerate destabilisation (below critical temperatures of phase inversion or chemical degradation). Temperature affects not only the viscosity, but also interfacial tension in the case of non-ionic surfactants or more generally interactions forces inside the system. Storing a dispersion at high temperatures enables to simulate real life conditions for a product (e.g. tube of sunscreen cream in a car in the summer), but also to accelerate destabilisation processes up to 200 times. Mechanical acceleration including vibration, centrifugation and agitation are sometimes used. They subject the product to different forces that pushes the particles / droplets against one another, hence helping in the film drainage. However, some emulsions would never coalesce in normal gravity, while they do under artificial gravity.[23] Moreover, segregation of different populations of particles have been highlighted when using centrifugation and vibration.[24]
In physics
In physics, colloids are an interesting model system for atoms.[25] Micrometre-scale colloidal particles are large enough to be observed by optical techniques such as confocal microscopy. Many of the forces that govern the structure and behavior of matter, such as excluded volume interactions or electrostatic forces, govern the structure and behavior of colloidal suspensions. For example, the same techniques used to model ideal gases can be applied to model the behavior of a hard sphere colloidal suspension. In addition, phase transitions in colloidal suspensions can be studied in real time using optical techniques,[26] and are analogous to phase transitions in liquids. In many interesting cases optical fluidity is used to control colloid suspensions.[26][27]