Clonal deletion
   HOME

TheInfoList



OR:

In
immunology Immunology is a branch of medicineImmunology for Medical Students, Roderick Nairn, Matthew Helbert, Mosby, 2007 and biology that covers the medical study of immune systems in humans, animals, plants and sapient species. In such we can see ther ...
, clonal deletion is the removal through
apoptosis Apoptosis (from grc, ἀπόπτωσις, apóptōsis, 'falling off') is a form of programmed cell death that occurs in multicellular organisms. Biochemical events lead to characteristic cell changes ( morphology) and death. These changes in ...
of
B cell B cells, also known as B lymphocytes, are a type of white blood cell of the lymphocyte subtype. They function in the humoral immunity component of the adaptive immune system. B cells produce antibody molecules which may be either secreted o ...
s and
T cell A T cell is a type of lymphocyte. T cells are one of the important white blood cells of the immune system and play a central role in the adaptive immune response. T cells can be distinguished from other lymphocytes by the presence of a T-cell r ...
s that have expressed
receptors Receptor may refer to: *Sensory receptor, in physiology, any structure which, on receiving environmental stimuli, produces an informative nerve impulse *Receptor (biochemistry), in biochemistry, a protein molecule that receives and responds to a n ...
for self before developing into fully immunocompetent lymphocytes. This prevents recognition and destruction of self host cells, making it a type of negative selection or
central tolerance In immunology, central tolerance (also known as negative selection) is the process of eliminating any ''developing'' T or B lymphocytes that are autoreactive, i.e. reactive to the body itself. Through elimination of autoreactive lymphocytes, to ...
. Central tolerance prevents B and T lymphocytes from reacting to self. Thus, clonal deletion can help protect individuals against
autoimmunity In immunology, autoimmunity is the system of immune responses of an organism against its own healthy cells, tissues and other normal body constituents. Any disease resulting from this type of immune response is termed an "autoimmune disease". ...
. Clonal deletion is thought to be the most common type of negative selection. It is one method of
immune tolerance Immune tolerance, or immunological tolerance, or immunotolerance, is a state of unresponsiveness of the immune system to substances or tissue that would otherwise have the capacity to elicit an immune response in a given organism. It is induced by ...
.


Discovery and function

Frank Macfarlane Burnet Sir Frank Macfarlane Burnet, (3 September 1899 – 31 August 1985), usually known as Macfarlane or Mac Burnet, was an Australian virologist known for his contributions to immunology. He won a Nobel Prize in 1960 for predicting acquired immune ...
proposed autoreactive cells would be terminated before maturation in order to prevent further proliferation in his study in 1959. There are millions of B and T cells inside the body, both created within the
bone marrow Bone marrow is a semi-solid biological tissue, tissue found within the Spongy bone, spongy (also known as cancellous) portions of bones. In birds and mammals, bone marrow is the primary site of new blood cell production (or haematopoiesis). It i ...
and the latter matures in the
thymus The thymus is a specialized primary lymphoid organ of the immune system. Within the thymus, thymus cell lymphocytes or '' T cells'' mature. T cells are critical to the adaptive immune system, where the body adapts to specific foreign invaders ...
, hence the T. Each of these lymphocytes express specificity to a particular
epitope An epitope, also known as antigenic determinant, is the part of an antigen that is recognized by the immune system, specifically by antibodies, B cells, or T cells. The epitope is the specific piece of the antigen to which an antibody binds. The p ...
, or the part of an antigen to which B cell and T cell receptors recognize and bind. There is a large diversity of epitopes recognized and, as a result, it is possible for some B and T lymphocytes to develop with the ability to recognize self. B and T cells are presented with self antigen after developing receptors while they are still in the primary lymphoid organs. Those cells that demonstrate a high affinity for this self antigen are often subsequently deleted so they cannot create progeny, which helps protect the host against autoimmunity. Thus, the host develops a tolerance for this antigen, or a self tolerance.


Location

B and T lymphocytes are tested for their affinity for self MHC/
peptide Peptides (, ) are short chains of amino acids linked by peptide bonds. Long chains of amino acids are called proteins. Chains of fewer than twenty amino acids are called oligopeptides, and include dipeptides, tripeptides, and tetrapeptides. ...
complexes before leaving the primary lymphoid organs and entering into the periphery. If they demonstrate high affinity for self-antigen, one method of preventing autoimmunity is through clonal deletion. This is where the lymphocyte would receive apoptotic signals from
antigen-presenting cell An antigen-presenting cell (APC) or accessory cell is a cell that displays antigen bound by major histocompatibility complex (MHC) proteins on its surface; this process is known as antigen presentation. T cells may recognize these complexes usi ...
(APCs). It is important to note that not all lymphocytes expressing high affinity for self-antigen undergo clonal deletion. B lymphocytes can also participate in light chain receptor editing, VH gene replacement, or be released and later undergo negative selection in the periphery. T lymphocytes can instead undergo clonal arrest, clonal anergy, and clonal editing. If autoreactive cells escape clonal deletion in either the thymus or the bone marrow, there are mechanisms in the periphery involving T regulatory cells to prevent the host from obtaining an autoimmune disease. However, for both B and T cells in the primary lymphoid organs, clonal deletion is the most common form of negative selection.


B cells

B cells demonstrating high affinity for self antigen can undergo clonal deletion within the bone marrow. This occurs after the functional
B-cell receptor The B cell receptor (BCR) is a transmembrane protein on the surface of a B cell. A B cell receptor is composed of a membrane-bound immunoglobulin molecule and a signal transduction moiety. The former forms a type 1 transmembrane receptor protein, ...
(BCR) is assembled. It is possible for B cells with high self affinity to go undeleted because they require activation signals and stimulation from autoreactive T cells. Such T cells are often removed via clonal deletion, leaving autoreactive B cells unstimulated and unactivated. These B cells do not pose a threat, even in the periphery, because they cannot be activated without an autoreactive T cell to stimulate them.


T cells

Between 2% and 5% of T cells develop auto-reactive receptors. Most of these undergo negative selection by clonal deletion.


Thymic cortex

T cells that show a high affinity for self MHC/peptide complexes can undergo clonal deletion in the
thymus The thymus is a specialized primary lymphoid organ of the immune system. Within the thymus, thymus cell lymphocytes or '' T cells'' mature. T cells are critical to the adaptive immune system, where the body adapts to specific foreign invaders ...
. Thymic
dendritic cell Dendritic cells (DCs) are antigen-presenting cells (also known as ''accessory cells'') of the mammalian immune system. Their main function is to process antigen material and present it on the cell surface to the T cells of the immune system. Th ...
s and
macrophage Macrophages (abbreviated as M φ, MΦ or MP) ( el, large eaters, from Greek ''μακρός'' (') = large, ''φαγεῖν'' (') = to eat) are a type of white blood cell of the immune system that engulfs and digests pathogens, such as cancer ce ...
s appear to be responsible for the apoptotic signals sent to autoreactive T cells in the thymic cortex.


Thymic medulla

T cells also have the opportunity to undergo clonal deletion within the thymic medulla if they express high affinity for self MHC/peptide complexes. Positive selection occurs in the thymic cortex, which suggests it is possible for a cell to undergo positive selection within the cortex and then negative selection in the medulla via clonal deletion.
Epithelial cell Epithelium or epithelial tissue is one of the four basic types of animal tissue, along with connective tissue, muscle tissue and nervous tissue. It is a thin, continuous, protective layer of compactly packed cells with a little intercellul ...
s are responsible for clonal deletion within the medulla. These medullary epithelial cells express an
autoimmune regulator The autoimmune regulator (''AIRE'') is a protein that in humans is encoded by the ''AIRE'' gene. It is a 13kb gene on chromosome 21q22.3 that has 545 amino acids. AIRE is a transcription factor expressed in the medulla (inner part) of the th ...
(AIRE) which allows these cells to present proteins specific to other parts of the body to T lymphocytes. This helps eliminate autoreactive T cells that recognize a protein from a specific body part.


Complete vs. incomplete clonal deletion

Complete clonal deletion results in apoptosis of all B and T lymphocytes expressing high affinity for self antigen. Incomplete clonal deletion results in apoptosis of most autoreactive B and T lymphocytes. Complete clonal deletion can lead to opportunities for
molecular mimicry Molecular mimicry is defined as the theoretical possibility that sequence similarities between foreign and self-peptides are sufficient to result in the cross-activation of autoreactive T or B cells by pathogen-derived peptides. Despite the preval ...
, which has adverse effects for the host. Therefore, incomplete clonal deletion allows for a balance between the host’s ability to recognize foreign antigens and self antigens.


Methods of exploitation


Molecular mimicry

Clonal deletion provides an incentive for microorganisms to develop epitopes similar to proteins found within the host. Because most autoresponsive cells undergo clonal deletion, this allows microorganisms with epitopes similar to host antigen to escape recognition and detection by T and B lymphocytes. However, if detected, this can lead to an autoimmune response because of the similarity of the epitopes on the microorganism and host antigen. Examples of this are seen in ''
Streptococcus pyogenes ''Streptococcus pyogenes'' is a species of Gram-positive, aerotolerant bacteria in the genus '' Streptococcus''. These bacteria are extracellular, and made up of non-motile and non-sporing cocci (round cells) that tend to link in chains. They ...
'' and ''
Borrelia burgdorferi ''Borrelia burgdorferi'' is a bacterial species of the spirochete class in the genus '' Borrelia'', and is one of the causative agents of Lyme disease in humans. Along with a few similar genospecies, some of which also cause Lyme disease, it mak ...
.'' It is possible, but uncommon for molecular mimicry to lead to an autoimmune disease.


Superantigens

Superantigen Superantigens (SAgs) are a class of antigens that result in excessive activation of the immune system. Specifically it causes non-specific activation of T-cells resulting in polyclonal T cell activation and massive cytokine release. SAgs are ...
s are composed of viral or bacterial proteins and can hijack the clonal deletion process when expressed in the thymus because they resemble the
T-cell receptor The T-cell receptor (TCR) is a protein complex found on the surface of T cells, or T lymphocytes, that is responsible for recognizing fragments of antigen as peptides bound to major histocompatibility complex (MHC) molecules. The binding b ...
(TCR) interaction with self MHC/peptides. Thus, through this process, superantigens can effectively prevent maturation of cognate T cells.


References


External links

* {{Immune system Immunology