Choquet theory
   HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, Choquet theory, named after
Gustave Choquet Gustave Choquet (; 1 March 1915 – 14 November 2006) was a French mathematician. Choquet was born in Solesmes, Nord. His contributions include work in functional analysis, potential theory, topology and measure theory. He is known for creati ...
, is an area of
functional analysis Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector spaces endowed with some kind of limit-related structure (e.g. Inner product space#Definition, inner product, Norm (mathematics)#Defini ...
and
convex analysis Convex analysis is the branch of mathematics devoted to the study of properties of convex functions and convex sets, often with applications in convex minimization, a subdomain of optimization theory. Convex sets A subset C \subseteq X of s ...
concerned with
measures Measure may refer to: * Measurement, the assignment of a number to a characteristic of an object or event Law * Ballot measure, proposed legislation in the United States * Church of England Measure, legislation of the Church of England * Measu ...
which have
support Support may refer to: Arts, entertainment, and media * Supporting character Business and finance * Support (technical analysis) * Child support * Customer support * Income Support Construction * Support (structure), or lateral support, a ...
on the
extreme points In mathematics, an extreme point of a convex set S in a Real number, real or Complex number, complex vector space is a point in S which does not lie in any open line segment joining two points of S. In linear programming problems, an extreme po ...
of a
convex set In geometry, a subset of a Euclidean space, or more generally an affine space over the reals, is convex if, given any two points in the subset, the subset contains the whole line segment that joins them. Equivalently, a convex set or a convex r ...
''C''. Roughly speaking, every
vector Vector most often refers to: *Euclidean vector, a quantity with a magnitude and a direction *Vector (epidemiology), an agent that carries and transmits an infectious pathogen into another living organism Vector may also refer to: Mathematic ...
of ''C'' should appear as a weighted average of extreme points, a concept made more precise by generalizing the notion of weighted average from a
convex combination In convex geometry and vector algebra, a convex combination is a linear combination of points (which can be vectors, scalars, or more generally points in an affine space) where all coefficients are non-negative and sum to 1. In other word ...
to an
integral In mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented i ...
taken over the set ''E'' of extreme points. Here ''C'' is a subset of a
real vector space Real may refer to: Currencies * Brazilian real (R$) * Central American Republic real * Mexican real * Portuguese real * Spanish real * Spanish colonial real Music Albums * ''Real'' (L'Arc-en-Ciel album) (2000) * ''Real'' (Bright album) (2010) ...
''V'', and the main thrust of the theory is to treat the cases where ''V'' is an infinite-dimensional (locally convex Hausdorff)
topological vector space In mathematics, a topological vector space (also called a linear topological space and commonly abbreviated TVS or t.v.s.) is one of the basic structures investigated in functional analysis. A topological vector space is a vector space that is als ...
along lines similar to the finite-dimensional case. The main concerns of Gustave Choquet were in
potential theory In mathematics and mathematical physics, potential theory is the study of harmonic functions. The term "potential theory" was coined in 19th-century physics when it was realized that two fundamental forces of nature known at the time, namely gravi ...
. Choquet theory has become a general paradigm, particularly for treating
convex cone In linear algebra, a ''cone''—sometimes called a linear cone for distinguishing it from other sorts of cones—is a subset of a vector space that is closed under scalar multiplication; that is, is a cone if x\in C implies sx\in C for every . ...
s as determined by their extreme
rays Ray may refer to: Fish * Ray (fish), any cartilaginous fish of the superorder Batoidea * Ray (fish fin anatomy), a bony or horny spine on a fin Science and mathematics * Ray (geometry), half of a line proceeding from an initial point * Ray (gra ...
, and so for many different notions of ''positivity'' in mathematics. The two ends of a
line segment In geometry, a line segment is a part of a straight line that is bounded by two distinct end points, and contains every point on the line that is between its endpoints. The length of a line segment is given by the Euclidean distance between ...
determine the points in between: in vector terms the segment from ''v'' to ''w'' consists of the λ''v'' + (1 − λ)''w'' with 0 ≤ λ ≤ 1. The classical result of
Hermann Minkowski Hermann Minkowski (; ; 22 June 1864 – 12 January 1909) was a German mathematician and professor at Königsberg, Zürich and Göttingen. He created and developed the geometry of numbers and used geometrical methods to solve problems in number t ...
says that in
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's Elements, Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics ther ...
, a
bounded Boundedness or bounded may refer to: Economics * Bounded rationality, the idea that human rationality in decision-making is bounded by the available information, the cognitive limitations, and the time available to make the decision * Bounded e ...
,
closed Closed may refer to: Mathematics * Closure (mathematics), a set, along with operations, for which applying those operations on members always results in a member of the set * Closed set, a set which contains all its limit points * Closed interval, ...
convex set In geometry, a subset of a Euclidean space, or more generally an affine space over the reals, is convex if, given any two points in the subset, the subset contains the whole line segment that joins them. Equivalently, a convex set or a convex r ...
''C'' is the
convex hull In geometry, the convex hull or convex envelope or convex closure of a shape is the smallest convex set that contains it. The convex hull may be defined either as the intersection of all convex sets containing a given subset of a Euclidean space ...
of its extreme point set ''E'', so that any ''c'' in ''C'' is a (finite)
convex combination In convex geometry and vector algebra, a convex combination is a linear combination of points (which can be vectors, scalars, or more generally points in an affine space) where all coefficients are non-negative and sum to 1. In other word ...
of points ''e'' of ''E''. Here ''E'' may be a finite or an
infinite set In set theory, an infinite set is a set that is not a finite set. Infinite sets may be countable or uncountable. Properties The set of natural numbers (whose existence is postulated by the axiom of infinity) is infinite. It is the only set th ...
. In vector terms, by assigning non-negative weights ''w''(''e'') to the ''e'' in ''E'',
almost all In mathematics, the term "almost all" means "all but a negligible amount". More precisely, if X is a set, "almost all elements of X" means "all elements of X but those in a negligible subset of X". The meaning of "negligible" depends on the math ...
0, we can represent any ''c'' in ''C'' as c = \sum_ w(e) e\ with \sum_ w(e) = 1.\ In any case the ''w''(''e'') give a
probability measure In mathematics, a probability measure is a real-valued function defined on a set of events in a probability space that satisfies measure properties such as ''countable additivity''. The difference between a probability measure and the more gener ...
supported on a finite subset of ''E''. For any
affine function In Euclidean geometry, an affine transformation or affinity (from the Latin, ''affinis'', "connected with") is a geometric transformation that preserves lines and parallelism, but not necessarily Euclidean distances and angles. More generally, ...
''f'' on ''C'', its value at the point ''c'' is f (c) = \int f(e) d w(e). In the infinite dimensional setting, one would like to make a similar statement.


Choquet's theorem

:Choquet's theorem states that for a
compact Compact as used in politics may refer broadly to a pact or treaty; in more specific cases it may refer to: * Interstate compact * Blood compact, an ancient ritual of the Philippines * Compact government, a type of colonial rule utilized in British ...
convex subset ''C'' of a
normed space In mathematics, a normed vector space or normed space is a vector space over the real or complex numbers, on which a norm is defined. A norm is the formalization and the generalization to real vector spaces of the intuitive notion of "length" i ...
''V'', given ''c'' in ''C'' there exists a
probability measure In mathematics, a probability measure is a real-valued function defined on a set of events in a probability space that satisfies measure properties such as ''countable additivity''. The difference between a probability measure and the more gener ...
''w'' supported on the set ''E'' of extreme points of ''C'' such that, for any affine function ''f'' on ''C,'' f (c) = \int f(e) d w(e). In practice ''V'' will be a
Banach space In mathematics, more specifically in functional analysis, a Banach space (pronounced ) is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vector ...
. The original
Krein–Milman theorem In the mathematical theory of functional analysis, the Krein–Milman theorem is a proposition about compact convex sets in locally convex topological vector spaces (TVSs). This theorem generalizes to infinite-dimensional spaces and to arbitrar ...
follows from Choquet's result. Another corollary is the
Riesz representation theorem :''This article describes a theorem concerning the dual of a Hilbert space. For the theorems relating linear functionals to measures, see Riesz–Markov–Kakutani representation theorem.'' The Riesz representation theorem, sometimes called the R ...
for states on the continuous functions on a metrizable compact Hausdorff space. More generally, for ''V'' a
locally convex topological vector space In functional analysis and related areas of mathematics, locally convex topological vector spaces (LCTVS) or locally convex spaces are examples of topological vector spaces (TVS) that generalize normed spaces. They can be defined as topological vec ...
, the Choquet–Bishop–de Leeuw theorem
Errett Bishop Errett Albert Bishop (July 14, 1928 – April 14, 1983) was an Americans, American mathematician known for his work on analysis. He expanded constructive analysis in his 1967 ''Foundations of Constructive Analysis'', where he Mathematical proof, p ...
; Karl de Leeuw
"The representations of linear functionals by measures on sets of extreme points"
Annales de l'Institut Fourier, 9 (1959), pp. 305–331.
gives the same formal statement. In addition to the existence of a probability measure supported on the extreme boundary that represents a given point ''c'', one might also consider the uniqueness of such measures. It is easy to see that uniqueness does not hold even in the finite dimensional setting. One can take, for counterexamples, the convex set to be a
cube In geometry, a cube is a three-dimensional solid object bounded by six square faces, facets or sides, with three meeting at each vertex. Viewed from a corner it is a hexagon and its net is usually depicted as a cross. The cube is the only r ...
or a ball in R3. Uniqueness does hold, however, when the convex set is a finite dimensional
simplex In geometry, a simplex (plural: simplexes or simplices) is a generalization of the notion of a triangle or tetrahedron to arbitrary dimensions. The simplex is so-named because it represents the simplest possible polytope in any given dimension. ...
. A finite dimensional simplex is a special case of a Choquet simplex. Any point in a Choquet simplex is represented by a unique probability measure on the extreme points.


See also

* * * * *


Notes


References

* * * * {{Analysis in topological vector spaces Convex hulls Functional analysis Integral representations